Need help to solve 5 simultaneous first order differential equations with Initial Condition.

조회 수: 3 (최근 30일)
I have to solve following first order ordinary differential equations and plot the values of Concentrations (Cmn, Cecm, Crec, Ccirc, Ccells) against time (t).
where value of r(t) is described as following.
Below is my script, but I am getting constant errors. or something i dont understand.
clc; close; clear;
%Constant Parameters
Cmn0 = 6.2E-6; %Initial conc at the MN (
tr = 1805; %release period (s)
ka = 5.01E6; %Association rate (in 1/s)
kd = 5E-4; %Dissociation rate (in 1/s)
ki = 5.05E-3; %Internalization rate (in 1/s)
kc = 5E-3; %Circulation uptake rate (in 1/s)
Rtot = 1.85E-6 ; %initial receptor concentration (in umol/mm^3)
syms r(t) C_mn(t) C_ecm(t) C_rec(t) C_circ(t) C_cells(t) %creating symbolic variable
ode1 = diff(r) == Cmn0/tr;
ode2 = diff(C_mn) == -r;
ode3 = diff(C_ecm) == r- (ka * C_ecm * (Rtot - C_rec - C_cells)) + kd * C_rec - kc * C_ecm;
ode4 = diff(C_rec) == (ka * C_ecm * (Rtot - C_rec - C_cells)) - ((kd + ki)* C_rec);
ode5 = diff(C_circ) == kc * C_ecm;
ode6 = diff(C_cells) == ki * C_rec;
odes = [ode1; ode2; ode3; ode4; ode5; ode6]
cond1 = r(0) == Cmn0/tr;
cond2 = C_mn(0) == 6.2E-6;
cond3 = C_ecm(0) == 0;
cond4 = C_rec(0) == 0;
cond5 = C_circ(0) == 0;
cond6 = C_cells(0) == 0;
conds = [cond1; cond2; cond3; cond4; cond5; cond6];
[VF,Sbs] = odeToVectorField(odes);
odsefcn = matlabFunction(VF,'File', 'Consolvefun')
[t, C] = ode45(@Consolvefun, [0 5000], conds);

채택된 답변

Alan Stevens
Alan Stevens 2021년 4월 14일
You have a stiff system (ka~10^6, kd~10^-4), so use ode15s rather than ode45. The following works. I'll leave you to decide if the results make sense!
C0 = [6.2E-6, 0, 0, 0, 0];
tspan = 0:10:5000;
[t, C] = ode15s(@fn, tspan, C0);
C_mn = C(:,1);
C_ecm = C(:,2);
C_rec = C(:,3);
C_circ = C(:,4);
C_cells = C(:,5);
plot(t,C_mn,t,C_ecm,t,C_rec,t,C_circ,t,C_cells),grid
xlabel('t'),ylabel('C')
legend('Cmn','Cecm','Crec','Ccirc','Ccells')
function dCdt = fn(t, C)
%Constant Parameters
Cmn0 = 6.2E-6; %Initial conc at the MN (
tr = 1805; %release period (s)
ka = 5.01E6; %Association rate (in 1/s)
kd = 5E-4; %Dissociation rate (in 1/s)
ki = 5.05E-3; %Internalization rate (in 1/s)
kc = 5E-3; %Circulation uptake rate (in 1/s)
Rtot = 1.85E-6 ; %initial receptor concentration (in umol/mm^3)
r = Cmn0/tr*(t<=tr);
C_mn = C(1);
C_ecm = C(2);
C_rec = C(3);
C_circ = C(4);
C_cells = C(5);
dCdt = [ -r;
r- ka * C_ecm * (Rtot - C_rec - C_cells) + kd * C_rec - kc * C_ecm;
ka * C_ecm * (Rtot - C_rec - C_cells) - (kd + ki)* C_rec;
kc * C_ecm;
ki * C_rec];
end
  댓글 수: 3
HARSH ZALAVADIYA
HARSH ZALAVADIYA 2021년 4월 14일
And also the condition for r(t) says that when t>tr, it is 0, where as in the graph its not saturating at 1. Thats the part I am confused that how do i put that in code?

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Ordinary Differential Equations에 대해 자세히 알아보기

제품


릴리스

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by