Dijkstra's algorithm problem

조회 수: 20 (최근 30일)
googo
googo 2013년 6월 3일
댓글: Christine Tobler 2018년 3월 5일
Hello!
I'm trying to build a previous nod vector and I'm handling some problems. not clear, right? :) that's way I'll explain the problem by example.
For example: please look at the image above. Suppose A=city number 1,B=city number 2,C=city number 3 and etc.
SRC = 1; If the optimal path previous nod is equal to the source city (in this case: 1) then the previous vector will get -1 in the specific place(in this case in place 1)
So the vector I'm trying to bulid is: [-1 1 2 1 2 5 4 5 8 9]
Reminder in the image: A=1,B=2,...,J=10.
1 ->1 -> optimal path: 1-->1 [-1 ]
1 ->2 -> optimal path: 1-->2 [-1 2 ]
1 ->3 -> optima; path: 1->2->3 [-1 1 2] ]
1 ->4 -> optimal path: 1-->4 [-1 1 2 1 ]
1 ->5 -> optimal path: 1->2>5 [-1 1 2 1 2 ]
1 ->6 -> optimal path: 1-->2-->5->6 [-1 1 2 1 2 5 ]
*
*
*
1-->10
This is the code:
% Compute the shortest paths from SRC to all other nodes % using Dijkstra's algorithm. function [d previous] = dijkstra(SRC,D)
% Initialize shortest distances
N = size(D,1); % number of cities
d = ones(1,N)*Inf;
d(SRC) = 0;
active = 1:N; % all nodes are active
previous = [];
L = size(previous,2);
% while there is a nodes that was not handled
while length(active)>0
% find the city with smallest d
% d(active) 'selects' the d-values for the active nodes
[val,active_idx] = min(d(active));
chosen = active(active_idx);
% now handle the city
for j=find(D(chosen,:)<Inf)
% now I need to update a distance (relaxation)
if d(chosen)+D(chosen,j) < d(j)
* d(j) = d(chosen) + D(chosen,j);
L=L+1;
if SRC == j
previous(L) = -1;
else
previous(L) = D(chosen); *
end
end
end % done with all neighbors
% take out treated node from active
active(active_idx) = [];
end
end
Well, I'm doing something wrong in:
L=L+1;
if SRC == j
previous(L) = -1;
else
previous(L) = D(chosen); *
end
and that's give me wrong output.
Can you please help me help me finding the right way to do this? thank you very much!

답변 (3개)

John BG
John BG 2015년 12월 15일
In GitHub I found the following:
function [dist,path] = dijkstra(nodes,segments,start_id,finish_id)
%DIJKSTRA Calculates the shortest distance and path between points on a map
% using Dijkstra's Shortest Path Algorithm
%
% [DIST, PATH] = DIJKSTRA(NODES, SEGMENTS, SID, FID)
% Calculates the shortest distance and path between start and finish nodes SID and FID
%
% [DIST, PATH] = DIJKSTRA(NODES, SEGMENTS, SID)
% Calculates the shortest distances and paths from the starting node SID to all
% other nodes in the map
%
% Note:
% DIJKSTRA is set up so that an example is created if no inputs are provided,
% but ignores the example and just processes the inputs if they are given.
%
% Inputs:
% NODES should be an Nx3 or Nx4 matrix with the format [ID X Y] or [ID X Y Z]
% where ID is an integer, and X, Y, Z are cartesian position coordinates)
% SEGMENTS should be an Mx3 matrix with the format [ID N1 N2]
% where ID is an integer, and N1, N2 correspond to node IDs from NODES list
% such that there is an [undirected] edge/segment between node N1 and node N2
% SID should be an integer in the node ID list corresponding with the starting node
% FID (optional) should be an integer in the node ID list corresponding with the finish
%
% Outputs:
% DIST is the shortest Euclidean distance
% If FID was specified, DIST will be a 1x1 double representing the shortest
% Euclidean distance between SID and FID along the map segments. DIST will have
% a value of INF if there are no segments connecting SID and FID.
% If FID was not specified, DIST will be a 1xN vector representing the shortest
% Euclidean distance between SID and all other nodes on the map. DIST will have
% a value of INF for any nodes that cannot be reached along segments of the map.
% PATH is a list of nodes containing the shortest route
% If FID was specified, PATH will be a 1xP vector of node IDs from SID to FID.
% NAN will be returned if there are no segments connecting SID to FID.
% If FID was not specified, PATH will be a 1xN cell of vectors representing the
% shortest route from SID to all other nodes on the map. PATH will have a value
% of NAN for any nodes that cannot be reached along the segments of the map.
%
% Example:
% dijkstra; % calculates shortest path and distance between two nodes
% % on a map of randomly generated nodes and segments
%
% Example:
% nodes = [(1:10); 100*rand(2,10)]';
% segments = [(1:17); floor(1:0.5:9); ceil(2:0.5:10)]';
% figure; plot(nodes(:,2), nodes(:,3),'k.');
% hold on;
% for s = 1:17
% if (s <= 10) text(nodes(s,2),nodes(s,3),[' ' num2str(s)]); end
% plot(nodes(segments(s,2:3)',2),nodes(segments(s,2:3)',3),'k');
% end
% [d, p] = dijkstra(nodes, segments, 1, 10)
% for n = 2:length(p)
% plot(nodes(p(n-1:n),2),nodes(p(n-1:n),3),'r-.','linewidth',2);
% end
% hold off;
%
% Author: Joseph Kirk
% Email: jdkirk630 at gmail dot com
% Release: 1.3
% Release Date: 5/18/07
if (nargin < 3) % SETUP
% (GENERATE RANDOM EXAMPLE OF NODES AND SEGMENTS IF NOT GIVEN AS INPUTS)
% Create a random set of nodes/vertices,and connect some of them with
% edges/segments. Then graph the resulting map.
num_nodes = 40; L = 100; max_seg_length = 30; ids = (1:num_nodes)';
nodes = [ids L*rand(num_nodes,2)]; % create random nodes
h = figure; plot(nodes(:,2),nodes(:,3),'k.') % plot the nodes
text(nodes(num_nodes,2),nodes(num_nodes,3),...
[' ' num2str(ids(num_nodes))],'Color','b','FontWeight','b')
hold on
num_segs = 0; segments = zeros(num_nodes*(num_nodes-1)/2,3);
for i = 1:num_nodes-1 % create edges between some of the nodes
text(nodes(i,2),nodes(i,3),[' ' num2str(ids(i))],'Color','b','FontWeight','b')
for j = i+1:num_nodes
d = sqrt(sum((nodes(i,2:3) - nodes(j,2:3)).^2));
if and(d < max_seg_length,rand < 0.6)
plot([nodes(i,2) nodes(j,2)],[nodes(i,3) nodes(j,3)],'k.-')
% add this link to the segments list
num_segs = num_segs + 1;
segments(num_segs,:) = [num_segs nodes(i,1) nodes(j,1)];
end
end
end
segments(num_segs+1:num_nodes*(num_nodes-1)/2,:) = [];
axis([0 L 0 L])
% Calculate Shortest Path Using Dijkstra's Algorithm
% Get random starting/ending nodes,compute the shortest distance and path.
start_id = ceil(num_nodes*rand); disp(['start id = ' num2str(start_id)]);
finish_id = ceil(num_nodes*rand); disp(['finish id = ' num2str(finish_id)]);
[distance,path] = dijkstra(nodes,segments,start_id,finish_id);
disp(['distance = ' num2str(distance)]); disp(['path = [' num2str(path) ']']);
% If a Shortest Path exists,Plot it on the Map.
figure(h)
for k = 2:length(path)
m = find(nodes(:,1) == path(k-1));
n = find(nodes(:,1) == path(k));
plot([nodes(m,2) nodes(n,2)],[nodes(m,3) nodes(n,3)],'ro-','LineWidth',2);
end
title(['Shortest Distance from ' num2str(start_id) ' to ' ...
num2str(finish_id) ' = ' num2str(distance)])
hold off
else %--------------------------------------------------------------------------
% MAIN FUNCTION - DIJKSTRA'S ALGORITHM
% initializations
node_ids = nodes(:,1);
[num_map_pts,cols] = size(nodes);
table = sparse(num_map_pts,2);
shortest_distance = Inf(num_map_pts,1);
settled = zeros(num_map_pts,1);
path = num2cell(NaN(num_map_pts,1));
col = 2;
pidx = find(start_id == node_ids);
shortest_distance(pidx) = 0;
table(pidx,col) = 0;
settled(pidx) = 1;
path(pidx) = {start_id};
if (nargin < 4) % compute shortest path for all nodes
while_cmd = 'sum(~settled) > 0';
else % terminate algorithm early
while_cmd = 'settled(zz) == 0';
zz = find(finish_id == node_ids);
end
while eval(while_cmd)
% update the table
table(:,col-1) = table(:,col);
table(pidx,col) = 0;
% find neighboring nodes in the segments list
neighbor_ids = [segments(node_ids(pidx) == segments(:,2),3);
segments(node_ids(pidx) == segments(:,3),2)];
% calculate the distances to the neighboring nodes and keep track of the paths
for k = 1:length(neighbor_ids)
cidx = find(neighbor_ids(k) == node_ids);
if ~settled(cidx)
d = sqrt(sum((nodes(pidx,2:cols) - nodes(cidx,2:cols)).^2));
if (table(cidx,col-1) == 0) || ...
(table(cidx,col-1) > (table(pidx,col-1) + d))
table(cidx,col) = table(pidx,col-1) + d;
tmp_path = path(pidx);
path(cidx) = {[tmp_path{1} neighbor_ids(k)]};
else
table(cidx,col) = table(cidx,col-1);
end
end
end
% find the minimum non-zero value in the table and save it
nidx = find(table(:,col));
ndx = find(table(nidx,col) == min(table(nidx,col)));
if isempty(ndx)
break
else
pidx = nidx(ndx(1));
shortest_distance(pidx) = table(pidx,col);
settled(pidx) = 1;
end
end
if (nargin < 4) % return the distance and path arrays for all of the nodes
dist = shortest_distance';
path = path';
else % return the distance and path for the ending node
dist = shortest_distance(zz);
path = path(zz);
path = path{1};
end
end
NOT THIS ONE courtesy of https://github.com/andrehacker/fu-muster/blob/master/u12-randforests/@tree/findpath.m
function path = findpath(obj, n1, n2)
%%FINDPATH Shortest path between two nodes
% PATH = T.FINDPATH(N1, N2) return the sequence of indices that iterates
% through the tree T from the node of index N1 to the node of index N2.
%
% The path returned is the shortest one in terms of number of edges. It
% always starts with index N1 and ends with index N2. Such a path always
% exists since all nodes are connected in a tree.
%
% EXAMPLE:
% % Find the path between node 'ABplp' and node 'Ca'
% lineage = tree.example;
% n1 = find(lineage.strcmp('ABplp'));
% n2 = find(lineage.strcmp('Ca'));
% path = lineage.findpath(n1, n2)
% pt = tree(lineage, 'clear');
% index = 1;
% for i = path
% pt = pt.set(i, index);
% index = index + 1;
% end
% disp(pt.tostring)
if n1 == n2
path = n1;
elseif any( n2 == obj.depthfirstiterator(n1) )
% n2 is in the children of n1
path = [ n1 descend(n1) ];
else
% n2 is elsewhere in the tree
path = [ n1 ascend(n1) ];
end
function p = ascend(n)
if n == n2
p = [];
return;
end
parent = obj.getparent(n);
if any( n2 == obj.depthfirstiterator(parent) )
% it is in the parent descendant, so descend from the parent
p = [ parent descend(parent) ];
else
% no, so we still have to go up
p = [ parent ascend(parent) ];
end
end
function p = descend(n)
if n == n2
p = [];
return
end
children = obj.depthfirstiterator(n);
for c = children(2 : end) % Get rid of current node in the sequence
if any( n2 == obj.depthfirstiterator(c) )
p = [ c descend(c) ];
break
end
end
end
end
function [path,goal,gfound] = findPath(map,V,E,start,waypoints,ECwaypoints,radius)
% FINDPATH: Returns the shortest path between a start node and
% the closest waypoint given a set of nodes V and edges E.
%
% [PATH,GOAL,GFOUND] = FINDPATH(MAP,V,E,START,WAYPOINTS,ECWAYPOINTS,RADIUS) returns
% the shortest path between a start node and closest waypoint
% given a set of nodes V and edges E.
%
% INPUTS
% map N-by-4 matrix containing the coordinates of walls in the
% environment: [x1, y1, x2, y2]
% V Set of nodes in roadmap
% E Set of edges in roadmap
% start 1-by-2 array containing x/y coordinates of start location
% waypoints N-by-2 matrix containing the coordinates of waypoints in
% the environment: [x, y]
% ECwaypoints N-by-2 matrix containing the coordinates of extra credit
% waypoints in the environment: [x, y]
% radius radius of robot
%
% OUTPUTS
% path N-by-2 array containing a series of points representing the
% shortest path connecting initial and closest goal points
% goal 1-by-2 array containing x/y coordinates of closest goal node
% gfound An integer denoting the number of goals found
%
% Cornell University
% MAE 4180/5180: Autonomous Mobile Robots
% Final Competition
% Pu, Kenneth (kp295)
%%============================================================================
% INITIALIZE VARIABLES
%==============================================================================
% For all possible edges between start node and vertices in V, check if the
% edge is valid and if so add it to E
for i=1:size(V,1)
v = V(i,:);
if (edgeIsFree([start,v],map,radius))
E = [E;start,v];
% REMOVE:
% plot([start(1),v(1)],[start(2),v(2)],'b');
end
end
% Add start point to V
V = [V;start];
% Construct list of goal nodes
goals = [waypoints;ECwaypoints];
% Find minimum path using dijkstras
[path,goal,gfound] = dijkstra(V,E,start,goals);
end
And also found another one https://github.com/kennethpu/iRoombot/blob/172347c1be1d87b6e4138d1dfc848abff899af38/dijkstra.m
function [path,goal,gfound] = dijkstra(V,E,start,goals)
% DIJKSTRA: Takes as input a graph represented by a set of nodes V and
% edges E, a start position, and a list of goal positions, then returns
% the shortest path between start node and the closest goal node. Uses
% Dijkstra's algorithm
%
% [PATH,GOAL,GFOUND] = DIJKSTRA(V,E,START,GOALS) returns
% the shortest path between a start and goal node given a set of nodes V
% and edges E
%
% INPUTS
% V Set of nodes in graph
% E Set of edges in graph
% start 1-by-2 array containing x/y coordinates of start node
% goals N-by-2 array containing x/y coordinates of goal nodes
%
% OUTPUTS
% path N-by-2 array containing a series of points representing the
% shortest path connecting initial and closest goal points
% goal 1-by-2 array containing x/y coordinates of closest goal node
% gfound An integer denoting the number of goals found
%
% Cornell University
% MAE 4180/5180: Autonomous Mobile Robots
% Final Competition
% Pu, Kenneth (kp295)
%%============================================================================
% INITIALIZE VARIABLES
%==============================================================================
V_cost = ones(size(V,1),1).*9999; % Array of node costs (initially HI)
V_prev = zeros(size(V,1),1); % List of node parent indices (initially 0)
% Integer to keep track of the number of goals found
gfound = 0;
% Set cost (distance from start) of start to 0
V_cost = setCost(start,V,V_cost,0);
% All nodes are initially in Q
Q = V; % List of nodes to be optimized
%%============================================================================
% RUN DJIKSTRAS
%==============================================================================
% Loop while there are still nodes to be optimized
while size(Q,1)
% Get node u in Q with smallest cost
qidx = minNode(Q,V,V_cost);
u = Q(qidx,:);
% Remove node u from Q
Q(qidx,:) = [];
% Break out of loop if u's cost is MAX. No more nodes are reachable
% from current node
if (getCost(u,V,V_cost) == 9999)
break;
end
% Get list of neighbor node indices
n_ids = getNeighbors(u,V,E);
% Iterate through all neighbors of u
for i=1:size(n_ids,1)
% Get neighbor node n
n = V(n_ids(i),:);
% Calculate alternative cost of n as cost of u + distance between u
% and n
u_cost = getCost(u,V,V_cost);
n_dist = pdist([u;n],'euclidean');
alt = u_cost + n_dist;
% If calculated alternative cost is cheaper than stored cost for n,
% replace stored cost for n and set u as parent node for n
if alt < getCost(n,V,V_cost)
V_cost = setCost(n,V,V_cost,alt);
V_prev = setPrev(n,V,V_prev,u);
end
end
if ismember(u,goals,'rows')
gfound = gfound+1;
if gfound == size(goals,1)
break;
end
end
end
%%============================================================================
% FIND CLOSEST GOAL
%==============================================================================
% Initialize array to hold goal nodes and their corresponding costs
goal_costs = zeros(size(goals,1),size(goals,2)+1);
for i=1:size(goals,1)
% Get costs for each goal and store in goal_costs
goal_costs(i,:) = [goals(i,:),getCost(goals(i,:),V,V_cost)];
end
% Sort goal_costs by cost
goal_costs = sortrows(goal_costs,3);
% Return the cheapest goal
goal = goal_costs(1,1:2);
%%============================================================================
% RECONSTRUCT MINIMUM PATH TO CLOSEST GOAL
%==============================================================================
% Start from goal point
u = goal;
% plot(u(1),u(2),'go','LineWidth',2);
% Add goal point to path
path = u;
% Step backward from goal point adding parent nodes until parent node index
% is no longer valid
while getPrev(u,V,V_prev)
prev_idx = getPrev(u,V,V_prev);
u = V(prev_idx,:);
% plot(u(1),u(2),'go','LineWidth',2);
% plot([u(1),path(1,1)],[u(2),path(1,2)],'g','LineWidth',2);
path = [u;path];
end
end
%%============================================================================
% minNode
%==============================================================================
% Helper function to get the index of the node with smallest cost in a
% list of nodes
%
% INPUTS
% Q list of nodes to search over
% V list of nodes in graph
% V_cost list of costs associated with V
%
% OUTPUTS
% nidx index of node in Q with smallest cost
function nidx = minNode(Q,V,V_cost)
% Initialize variables
nidx = 1;
min_cost = 9999;
% Iterate through all nodes in Q
for i=1:size(Q,1)
node = Q(i,:);
cost = getCost(node,V,V_cost);
% If node cost is less than minimum, save minimum cost and node index
if (cost<min_cost)
nidx = i;
min_cost = cost;
end
end
end
%%============================================================================
% getCost
%==============================================================================
% Helper function to get the cost of a node
%
% INPUTS
% n a given node
% V list of nodes in graph
% V_cost list of costs associated with V
%
% OUTPUTS
% cost cost associated with a node
function cost = getCost(n,V,V_cost)
% Find index corresponding to n in V
[~,idx] = ismember(n,V,'rows');
% Look up corresponding cost in V_cost
cost = V_cost(idx);
end
%%============================================================================
% setCost
%==============================================================================
% Helper function to set the cost of a node
%
% INPUTS
% n a given node
% V list of nodes in graph
% V_cost list of costs associated with V
% cost cost associated with a node
%
% OUTPUTS
% ret updated list of costs associated with V
function ret = setCost(n,V,V_cost,cost)
% Find index corresponding to n in V
[~,idx] = ismember(n,V,'rows');
% Set corresponding cost in V_cost to our target cost
V_cost(idx) = cost;
% Return updated list so our changes are not lost
ret = V_cost;
end
%%============================================================================
% getPrev
%==============================================================================
% Helper function to get the index of parent node of a given node
%
% INPUTS
% n a given node
% V list of nodes in graph
% V_prev list of parents associated with V
%
% OUTPUTS
% prev_idx index of parent node of a given node
function prev_idx = getPrev(n,V,V_prev)
% Find index corresponding to n in V
[~,idx] = ismember(n,V,'rows');
% Look up corresponding parent index in V_prev
prev_idx = V_prev(idx);
end
%%============================================================================
% setPrev
%==============================================================================
% Helper function to set the parent node of a given node
%
% INPUTS
% n a given node
% V list of nodes in graph
% V_prev list of parents associated with V
% prev parent node of a given node
%
% OUTPUTS
% ret updated list of parents associated with V
function ret = setPrev(n,V,V_prev,prev)
% Find index corresponding to n in V
[~,idx] = ismember(n,V,'rows');
% Find index corresponding to prev in V
[~,prev_idx] = ismember(prev,V,'rows');
% Set corresponding prev_idx in V_prev to our target prev_idx
V_prev(idx) = prev_idx;
% Return updated list so our changes are not lost
ret = V_prev;
end
%%============================================================================
% getNeighbors
%==============================================================================
% Helper function to get the indices of all neighboring nodes of a given
% node
%
% INPUTS
% n a given node
% V list of nodes in graph
% E list of edges in graph
%
% OUTPUTS
% ids N-by-1 array of indices of nodes in V neighboring node n
function ids = getNeighbors(n,V,E)
% Initialize empty list
ids = [];
% Iterate through all edges
for e=1:size(E,1)
% Get endpoints of edges
v1 = E(e,1:2);
v2 = E(e,3:4);
% If target node corresponds to first endpoint, save second
% endpoint as a neighbor
if (all(v1==n))
[~,idx] = ismember(v2,V,'rows');
ids = [ids;idx];
% If target node corresponds to second endpoint, save first
% endpoint as a neighbor
elseif (all(v2==n))
[~,idx] = ismember(v1,V,'rows');
ids = [ids;idx];
end
end
end

Christine Tobler
Christine Tobler 2015년 12월 17일
Since R2015b, MATLAB has a class graph which provides a function shortestpathtree that does this algorithm for you:
>> g = graph(D);
>> [t, d] = shortestpathtree(g, SRC);
I haven't tried out the code you posted, but on first glance, I think the line you point to should be
previous(L) = j;
since previous is typically an array of node indices on the path, not an array of distances.

Hardi Mohammed
Hardi Mohammed 2018년 3월 5일
Hi how to use dijkstra to find longest path?
  댓글 수: 1
Christine Tobler
Christine Tobler 2018년 3월 5일
Hi,
It's probably better to start a new question, as this is quite a different problem. The Dijkstra algorithm can't find the longest path for a general graph, because this is an NP-hard problem, and Dijkstra is a polynomial algorithm.
If your graph is directed acyclic, you could use the 'acyclic' method of the graph/shortestpath method in MATLAB, and just revert the sign of the edge weights.
For more information, see here: Wikipedia page for Longest Path Problem

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Dijkstra algorithm에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by