Use Lagrange interpolating polynomial method and cubic spline interpolation to evaluate the function f(x) at 100 equally spaced points in the interval [0,5].

조회 수: 21 (최근 30일)
X1 = [0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5];
Y1 = [0 0.247466462 0.881373587 1.550157957 2.094712547 2.532068064 2.893443986 3.200334942 3.466711038 3.70191108 3.912422766];
xx = linspace(0,5,100);
yy = lagrange_self(X1,Y1,xx);
s = spline(X1,Y1,xx);
plot(X1,Y1,'o',xx,yy,'.',xx,s,'*')
legend('ORIGINAL','LAGRANGE-CUBIC','CUBIC-SPLINE')
Error_lagrange = sum(((yy-7*xx).^2).^0.5)
Error_spline = sum(((s-7*xx).^2).^0.5)
function v = lagrange_self(x,y,u)
n = 4;
v = zeros(size(u));
for k = 1:n
w = ones(size(u));
for j = [1:k-1 k+1:n]
w = (u-x(j))./(x(k)-x(j)).*w;
end
v = v+w*y(k)
end
end
  댓글 수: 1
Kutlu Yigitturk
Kutlu Yigitturk 2020년 12월 25일
Use Lagrange interpolating polynomial method and cubic spline interpolation to evaluate the function f(x) at 100 equally spaced points in the interval [0,5]. Use cubic polynomial for Lagrange’s method as well. The points to be used in interpolations should include first and last point (0 and 5), other two points should be chosen such that those points would represent significant change in f(x). Show the plots for Lagrange’s method, cubic spline and the given data in one graph. Discuss which method is better.
Calculate the total error for both methods by using the following formula. Here yi is the given y value for xi , and f(xi) is the value of the interpolating function at point xi .
I WROTE THIS CODE, BUT I JUST WANT TO MAKE SURE IT'S WORKING OR NOT. CAN YOU PLEASE CHECK MY CODE, ACCORDING TO THE MY PARAGRAPH. I WILL BE WAITING YOUR HELP.
SINCERELY,
KUTLU YIGITTURK.

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Interpolation에 대해 자세히 알아보기

제품


릴리스

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by