Unable to run 'rlwatertank' example in R2020a

조회 수: 7 (최근 30일)
Nima Mathwork
Nima Mathwork 2020년 4월 17일
답변: Stefalo Acha 2023년 2월 18일
Hello everyone
I was trying to run this example.
While I successfully ran this example in R2019b, I could not successfully train the agent for this example in R2020a.
I also tried other available examples in the documentation; however, the learning plots in Reinforcement Learning Episode Manager differed from the plots exhibited in documentation.
I should mention I followed the exact steps in documentation and did not change value of any parameter.
Is this some sort of bug in "Reinforcement Learning Toolbox" at R2020a release?
  댓글 수: 2
Radovan Vuletic
Radovan Vuletic 2021년 2월 8일
I have a same problem with R2020b
>> open_system('rlwatertank')
No system or file called 'rlwatertank' found. 'rlwatertank' is used in
Create Simulink Environment and Train Agent
Create Simulink Environment Using Agent in Workspace
Validate Simulink Environment
Water Tank Reinforcement Learning Environment Model.
Any official statement on this?
Basically I am interested on PMSM control with RL, but that example dosn't work neither.
Mariam  Kashkash
Mariam Kashkash 2021년 3월 21일
I have also the same problem the rlwatertank does not open. Do you find any solution for this problem?

댓글을 달려면 로그인하십시오.

채택된 답변

Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis 2020년 4월 21일
Hi Nima,
This is the plot I got when running the watertank example in 20a:
While this is not exactly the same as the one shown in the documentation, training still converges.
A couple of reasons why the visual is not the same as in R2019b:
  1. We recently started using autodifferentiation under the hood, and while gradient values are still close, there are small numerical differences which lead to a different optimization route,
  2. Each release comes with more optimization improvements like the one above, which affect training results.
Note that training should still converge. Hope this helps
  댓글 수: 1
Reinforcement Learning
Reinforcement Learning 2021년 3월 21일
@Emmanouil Tzorakoleftherakis Why won't the specifications from the Water Tank Model apply to other transfer functions? I keep getting zero for any other system other than the water tank model (last two questions from me).

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Stefalo Acha
Stefalo Acha 2023년 2월 18일
Hello everyone
I was trying to run the below code in R2022b but keep an error about "No system or file called 'rlAreaCoverage' on the command line #15 --> mdl = "rlAreaCoverage";
Please, I will apreciate any help. Thanks
%define the drones location of obstacles within the grid using matrix of indeces
clc;
clear all;
close all;
obsMat = [4 3; 5 3; 6 3; 7 3; 8 3; 9 3; 5 11; 6 11; 7 11; 8 11; 5 12; 6 12; 7 12; 8 12];
%initialize the drones position
sA0 = [2 2];
sB0 = [11 4];
sC0 = [3 12];
s0 = [sA0; sB0; sC0];
%specify sample time
Ts = 0.1;
Tf = 100;
maxsteps = ceil(Tf/Ts);
mdl = "rlAreaCoverage";
open_system(mdl)
% Define observation specification
obssize = [12 12 4]
oinfo = rlNumericSpec(actionSpace)
ainfo.Nmae = 'action';
blks = mdl + ["/Agent A (Red)","/Agent B (Green)","/Agent C (Blue)"];
env = rlSimulinkEnv(mdl,blks,{oinfo,oinfo,oinfo},{ainfo,ainfo,ainfo});
env.ResetFcn = @(in) resetMap(in, obsMat);
rng(0)
for idx = 1:3
% Create actor deep neural network.
actorNetWork = [
imageInputLayer(obsSize,'Normalization','none','Name','observations')
convolution2dLayer(8,16,'Name','conv1','Stride',1,'Padding',1,'WeightsInitializer','he')
reluLayer('Name','relu1')
convolution2dLayer(4,8,'Name','conv2','Stride',1,'Padding','same','WeightsInitializer','he')
reluLayer('Name','relu2')
fullyConnectedLayer(256,'Name','fc1','WeightsInitializer','he')
reluLayer('Name','relu3')
fullyConnectedLayer(128,'Name','fc2','WeightsInitializer','he')
reluLayer('Name','relu4')
fullyConnectedLayer(64,'Name','fc3','WeightsInitializer','he')
reluLayer('Name','relu5')
fullyConnectedLayer(numAct,'Name','output')
softmaxLayer('Name','action')];
actorNetWork = dlnetwork(actorNetWork);
% Create critic deep neural network.
criticNetwork = [
imageInputLayer(obsSize,'Normalization','none','Name','observations')
convolution2dLayer(8,16,'Name','conv1','Stride',1,'Padding',1,'WeightsInitializer','he')
reluLayer('Name','relu1')
convolution2dLayer(4,8,'Name','conv2','Stride',1,'Padding','same','WeightsInitializer','he')
reluLayer('Name','relu2')
fullyConnectedLayer(256,'Name','fc1','WeightsInitializer','he')
reluLayer('Name','relu3')
fullyConnectedLayer(128,'Name','fc2','WeightsInitializer','he')
reluLayer('Name','relu4')
fullyConnectedLayer(64,'Name','fc3','WeightsInitializer','he')
reluLayer('Name','relu5')
fullyConnectedLayer(1,'Name','output')];
criticNetwork = dlnetwork(criticNetwork);
% create actor and critic
actor(idx) = rlDiscreteCategoricalActor(actorNetWork,oinfo,ainfo); %#ok<*SAGROW>
critic(idx) = rlValueFunction(criticNetwork,oinfo);
end
actorOpts = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1);
criticOpts = rlOptimizerOptions('LearnRate',1e-4,'GradientThreshold',1);
opt = rlPPOAgentOptions(...
'ActorOptimizerOptions',actorOpts,...
'CriticOptimizerOptions',criticOpts,...
'ExperienceHorizon',128,...
'ClipFactor',0.2,...
'EntropyLossWeight',0.01,...
'MiniBatchSize',64,...
'NumEpoch',3,...
'AdvantageEstimateMethod','gae',...
'GAEFactor',0.95,...
'SampleTime',Ts,...
'DiscountFactor',0.995);
agentA = rlPPOAgent(actor(1),critic(1),opt);
agentB = rlPPOAgent(actor(2),critic(2),opt);
agentC = rlPPOAgent(actor(3),critic(3),opt);
trainOpts = rlMultiAgentTrainingOptions(...
"AgentGroups","auto",...
"LearningStrategy","decentralized",...
'MaxEpisodes',1000,...
'MaxStepsPerEpisode',maxsteps,...
'Plots','training-progress',...
'ScoreAveragingWindowLength',100,...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',80);
doTraining = false;
if doTraining
result = train([agentA,agentB,agentC],env,trainOpts);
else
load('rlAreaCoverageAgents.mat');
end

카테고리

Help CenterFile Exchange에서 Reinforcement Learning에 대해 자세히 알아보기

제품


릴리스

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by