svm training and classification

조회 수: 7 (최근 30일)
vidhya v
vidhya v 2020년 3월 19일
댓글: vidhya v 2020년 12월 10일
Greetings,
I have to classify the input image of my dataset. Based on the below example code (Brain MRI detection), I am doing my project. for classification i have to use fitcsvm(). As i am new to matlab, I dont know how to implement it, because i have to pass features into ClassificationSVM. svmtrain() and svmclassify() are not supporting. please suggest on how can i replace the functions to get my result
example code:
g = graycomatrix(G);
stats = graycoprops(g,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast;
Correlation = stats.Correlation;
Energy = stats.Energy;
Homogeneity = stats.Homogeneity;
Mean = mean2(G);
Standard_Deviation = std2(G);
Entropy = entropy(G);
RMS = mean2(rms(G));
%Skewness = skewness(img)
Variance = mean2(var(double(G)));
a = sum(double(G(:)));
Smoothness = 1-(1/(1+a));
Kurtosis = kurtosis(double(G(:)));
Skewness = skewness(double(G(:)));
% Inverse Difference Movement
m = size(G,1);
n = size(G,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = G(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end
IDM = double(in_diff);
feat = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
load Trainset.mat
xdata = meas;
group = label;
svmStruct1 = svmtrain(xdata,group,'KernelFunction', 'linear');
species = svmclassify(svmStruct1,feat,'showplot',false);
if strcmpi(species,'MALIGNANT')
helpdlg(' Malignant Tumor ');
disp(' Malignant Tumor ');
else
helpdlg(' Benign Tumor ');
disp(' Benign Tumor ');
end

채택된 답변

Furkan DEMIR
Furkan DEMIR 2020년 12월 10일
Hello.
load Trainset.mat has two file. one of these meas and label.
When I see meas files. I saw 20*13 matrix. what is the meaning. Why the file is 20*13 matrix
  댓글 수: 1
vidhya v
vidhya v 2020년 12월 10일
Hello,
Thank you for your reply.
I was trying to use SVM for image processing in my project. I'm completely new to this stuff and I too don't know abt this code. Actually I took this code from github as my reference. I don't get the result and I dropped the idea of using SVM and went for BPNN. Sorry, I too don't know.

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Mahesh Taparia
Mahesh Taparia 2020년 3월 23일
Hi
You can use the function fitcsvm as follows:
SVMModel = fitcsvm(xdata,group,'KernelFunction', 'linear');
[label,score] = predict(SVMModel,feat);
label will give the labels of feat. For more information , you can visit the documentation page.
  댓글 수: 1
vidhya v
vidhya v 2020년 3월 24일
Thank you sir. I will try it

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Classification Learner App에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by