Normalizing a sparse matrix so that rows sum to 1

조회 수: 2 (최근 30일)
Ulrik William Nash
Ulrik William Nash 2019년 2월 26일
편집: Ulrik William Nash 2019년 2월 26일
I have the following sparse matrix, which relates to a markov process. The parts of the matrix have been assembled sequentially, adding new entries to row, column, and probability one at a time, and only then creating
S = sparse(row,column,probability)
Because the sequential process involves aggregating probabilities from some states that are equaivalent
full(S)
results in a matrix, whose rows sum to more than one. What I wish to achieve is a normalization of each row in S, such that all rows sum to one. How can that be done by operating on S without needing to create the full matrix?

채택된 답변

John D'Errico
John D'Errico 2019년 2월 26일
편집: John D'Errico 2019년 2월 26일
WTP?
M = sprand(10000,10000,.00001);
mean(sum(M,2))
ans =
(1,1) 0.050375
So M is large, sparse, and its rows sum to whatever they want to sum to.
M = M./sum(M,2);
[min(sum(M,2)),max(sum(M,2))]
ans =
(1,1) 1
(1,2) 1
So now normalized. The above will work properly in R2016b or later. I could have done the normalization by multiplying by a sparse diagonal matrix too, probably created using spdiags.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Sparse Matrices에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by