SVM、特徴ベクトル 

조회 수: 12 (최근 30일)
Yoshihiko Kuwabara
Yoshihiko Kuwabara 2019년 2월 22일
답변: Kenta 2019년 2월 22일
バイナリ分類のサポートベクターマシンの学習データ(特徴ベクトル)についてお尋ねします。
ドキュメンテーションでは2次元(平面)でのfitcsvmやpredictの使い方が解説されています。
これを3次元や4次元の特徴ベクトルに拡張するためには、fitcsvmのベクトルXを3列(4列)にすればよいのでしょうか?
また,この場合の分離空間の表示の例がありましたら御教示ください。

채택된 답변

Kenta
Kenta 2019년 2월 22일
したのコードにあるように、3列にすればできます。
分離平面の例としては、下のようなものがありました。一度試してみてください。
load fisheriris
X = meas(:,1:3);
y = ones(size(X,1),1);
SVMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,...
'OutlierFraction',0.05);

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기

제품


릴리스

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!