# Non linear fit with four parameters help.

조회 수: 1(최근 30일)
Hi
I am looking to fit some data with a model that has four parameters. I am presently using nlinfit, and have two problems. One is that my model returns imaginary numbers, which realistically I don't want. So is there any way to surpress them. Two is that as far as I can tell the fit is not very good. My fourth parameter doesn't change from the initial value and although I haven't looked into it on matlab, i think the residuals are not good. If any one could help that would be much appreciated. Here is some code
clear all;
close all;
close all hidden;
A = uiimport;
clear xdata;
clear ydata;
xdata = A.data(:,1);
ydata = A.data(:,6);
Vdata = A.data(:,5);
Vg = -xdata;
Gd = ydata./Vdata;
x0 = [1E-10;1;1;1E6];
options = optimset('Display','iter',...
'TolFun',1E-100,'TolX',1E-30,'MaxIter',1000);
[beta,resid,J,COVB,mse] = nlinfit(Vg,Gd,@myfun,[x0],options) ;
% [ci se] = nlparci(beta,resid,'covar',COVB);
Gd_new = (((beta(1)*(Vg-beta(2)).^(beta(3)+1)).^(-1))+beta(4)).^(-1);3
plot(Vg,Gd_new,'r',Vg,Gd,'o');
my function is
function F = myfun(a,Vg)
F = ((((a(1).*((Vg-a(2)).^(a(3)+1))).^(-1))+a(4)).^(-1));
end
I'll add some data on in just a sec

댓글을 달려면 로그인하십시오.

### 답변(1개)

Vg Ig Vs Is Vd Id
20 3.76E-10 0 -1.54E-10 -0.5 -5.27E-11
19.2 1.94E-10 0 -7.75E-11 -0.5 -3.01E-11
18.4 1.38E-10 0 -6.02E-11 -0.5 -2.18E-11
17.6 1.04E-10 0 -4.81E-11 -0.5 -1.62E-11
16.8 7.92E-11 0 -3.90E-11 -0.5 -1.46E-11
16 6.38E-11 0 -3.51E-11 -0.5 -1.21E-11
15.2 5.05E-11 0 -3.11E-11 -0.5 -9.92E-12
14.4 3.70E-11 0 -2.30E-11 -0.5 -7.64E-12
13.6 2.80E-11 0 -2.05E-11 -0.5 -7.42E-12
12.8 2.57E-11 0 -1.54E-11 -0.5 -3.41E-12
12 1.52E-11 0 -1.28E-11 -0.5 -3.25E-12
11.2 5.05E-12 0 -7.80E-12 -0.5 -2.42E-12
10.4 5.93E-12 0 -7.68E-12 -0.5 -1.99E-12
9.6 1.50E-12 0 -7.00E-12 -0.5 -1.97E-12
8.8 -6.94E-12 0 -3.68E-12 -0.5 -1.14E-12
8 -7.60E-12 0 -4.99E-12 -0.5 -7.20E-13
7.2 -1.23E-11 0 -2.49E-12 -0.5 -1.34E-12
6.4 -1.35E-11 0 -2.45E-12 -0.5 -2.90E-13
5.6 -1.55E-11 0 -1.86E-12 -0.5 -2.10E-13
4.8 -1.75E-11 0 2.90E-13 -0.5 -7.80E-13
4 -2.41E-11 0 1.64E-12 -0.5 3.30E-13
3.2 -2.19E-11 0 2.63E-12 -0.5 3.40E-13
2.4 -2.51E-11 0 6.60E-13 -0.5 4.81E-12
1.6 -3.24E-11 0 7.24E-12 -0.5 2.26E-12
0.8 -3.67E-11 0 7.82E-12 -0.5 5.37E-12
0 -4.93E-11 0 1.52E-11 -0.5 1.08E-11
-0.8 -5.78E-11 0 2.80E-11 -0.5 1.38E-11
-1.6 -8.40E-11 0 4.99E-11 -0.5 1.52E-11
-2.4 -1.63E-10 0 1.12E-10 -0.5 2.81E-11
-3.2 -2.83E-10 0 2.46E-10 -0.5 -1.47E-11
-4 -5.10E-10 0 6.24E-10 -0.5 -1.32E-10
-4.8 -1.02E-09 0 1.47E-09 -0.5 -5.33E-10
-5.6 -1.29E-09 0 2.82E-09 -0.5 -1.40E-09
-6.4 -2.96E-10 0 3.45E-09 -0.5 -2.75E-09
-7.2 -1.84E-10 0 4.80E-09 -0.5 -4.40E-09
-8 -2.15E-10 0 6.86E-09 -0.5 -6.43E-09
-8.8 -1.16E-10 0 9.14E-09 -0.5 -8.85E-09
-9.6 -1.63E-10 0 1.24E-08 -0.5 -1.17E-08
-10.4 -1.87E-10 0 1.52E-08 -0.5 -1.49E-08
-11.2 -2.20E-10 0 1.87E-08 -0.5 -1.83E-08
-12 -2.59E-10 0 2.25E-08 -0.5 -2.21E-08
-12.8 -3.14E-10 0 2.66E-08 -0.5 -2.62E-08
-13.6 -3.50E-10 0 3.12E-08 -0.5 -3.07E-08
-14.4 -3.98E-10 0 3.61E-08 -0.5 -3.56E-08
-15.2 -4.42E-10 0 4.17E-08 -0.5 -4.11E-08
-16 -4.81E-10 0 4.78E-08 -0.5 -4.71E-08
-16.8 -5.64E-10 0 5.45E-08 -0.5 -5.36E-08
-17.6 -5.99E-10 0 6.15E-08 -0.5 -6.06E-08
-18.4 -6.66E-10 0 6.90E-08 -0.5 -6.79E-08
-19.2 -7.33E-10 0 7.65E-08 -0.5 -7.54E-08
-20 -7.92E-10 0 8.43E-08 -0.5 -8.32E-08
-20.8 -8.61E-10 0 9.21E-08 -0.5 -9.08E-08
-21.6 -9.00E-10 0 1.00E-07 -0.5 -9.86E-08
-22.4 -9.56E-10 0 1.08E-07 -0.5 -1.07E-07
-23.2 -1.02E-09 0 1.17E-07 -0.5 -1.15E-07
-24 -1.09E-09 0 1.25E-07 -0.5 -1.24E-07
-24.8 -1.15E-09 0 1.34E-07 -0.5 -1.33E-07
-25.6 -1.22E-09 0 1.43E-07 -0.5 -1.41E-07
-26.4 -1.27E-09 0 1.52E-07 -0.5 -1.50E-07
-27.2 -1.35E-09 0 1.61E-07 -0.5 -1.59E-07
-28 -1.40E-09 0 1.70E-07 -0.5 -1.67E-07
-28.8 -1.45E-09 0 1.78E-07 -0.5 -1.76E-07
-29.6 -1.52E-09 0 1.87E-07 -0.5 -1.85E-07
-30.4 -1.56E-09 0 1.96E-07 -0.5 -1.94E-07
-31.2 -1.61E-09 0 2.05E-07 -0.5 -2.02E-07
-32 -1.67E-09 0 2.14E-07 -0.5 -2.11E-07
-32.8 -1.73E-09 0 2.22E-07 -0.5 -2.20E-07
-33.6 -1.80E-09 0 2.31E-07 -0.5 -2.28E-07
-34.4 -1.86E-09 0 2.39E-07 -0.5 -2.36E-07
-35.2 -1.93E-09 0 2.48E-07 -0.5 -2.45E-07
-36 -1.99E-09 0 2.56E-07 -0.5 -2.53E-07
-36.8 -2.06E-09 0 2.64E-07 -0.5 -2.62E-07
-37.6 -2.13E-09 0 2.73E-07 -0.5 -2.70E-07
-38.4 -2.20E-09 0 2.81E-07 -0.5 -2.78E-07
-39.2 -2.26E-09 0 2.89E-07 -0.5 -2.85E-07
-40 -2.35E-09 0 2.97E-07 -0.5 -2.93E-07
-40.8 -2.43E-09 0 3.05E-07 -0.5 -3.01E-07
-41.6 -2.58E-09 0 3.13E-07 -0.5 -3.09E-07
-42.4 -2.72E-09 0 3.21E-07 -0.5 -3.17E-07
-43.2 -2.72E-09 0 3.29E-07 -0.5 -3.26E-07
-44 -2.81E-09 0 3.37E-07 -0.5 -3.32E-07
-44.8 -2.85E-09 0 3.44E-07 -0.5 -3.41E-07
-45.6 -2.93E-09 0 3.52E-07 -0.5 -3.47E-07
-46.4 -2.95E-09 0 3.60E-07 -0.5 -3.55E-07
-47.2 -3.04E-09 0 3.67E-07 -0.5 -3.62E-07
-48 -3.13E-09 0 3.74E-07 -0.5 -3.69E-07
-48.8 -3.19E-09 0 3.81E-07 -0.5 -3.76E-07
-49.6 -3.26E-09 0 3.88E-07 -0.5 -3.83E-07
-50.4 -3.32E-09 0 3.94E-07 -0.5 -3.89E-07
-51.2 -3.42E-09 0 4.03E-07 -0.5 -3.96E-07
-52 -3.48E-09 0 4.09E-07 -0.5 -4.03E-07
-52.8 -3.54E-09 0 4.15E-07 -0.5 -4.10E-07
-53.6 -3.64E-09 0 4.22E-07 -0.5 -4.16E-07
-54.4 -3.75E-09 0 4.28E-07 -0.5 -4.22E-07
-55.2 -6.32E-09 0 4.34E-07 -0.5 -4.28E-07
-56 -3.94E-09 0 4.41E-07 -0.5 -4.34E-07
-56.8 -4.05E-09 0 4.46E-07 -0.5 -4.40E-07
-57.6 -4.16E-09 0 4.53E-07 -0.5 -4.47E-07
-58.4 -4.26E-09 0 4.58E-07 -0.5 -4.52E-07
-59.2 -4.35E-09 0 4.64E-07 -0.5 -4.58E-07
-60 -4.60E-09 0 4.71E-07 -0.5 -4.64E-07

댓글을 달려면 로그인하십시오.

### 범주

Find more on Linear and Nonlinear Regression in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by