이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
Why do I get this error at the Classifier code line?? Please help
조회 수: 17 (최근 30일)
이전 댓글 표시
%%Load Image Information from ORL Face Database Directory
faceDatabase = imageSet('orl_faces','recursive');
%%Display Montage of First Face
% (faceDatabase(1) means pull out all images belong to folder 1
figure;
montage(faceDatabase(1).ImageLocation);
title('Images of Single Face');
Display Query Image and Database Side-Side
personToQuery = 1; % Call the a set of images at position 1
galleryImage = read(faceDatabase(personToQuery),1);
figure;
for i=1:size(faceDatabase,2)
imageList(i) = faceDatabase(i).ImageLocation(5);
end
subplot(1,2,1);imshow(galleryImage);
subplot(1,2,2);montage(imageList);
diff = zeros(1,9);
%%Split Database into Training & Test Sets in the ratio 80% to 20%
[training,test] = partition(faceDatabase,[0.8 0.2]);
%%Extract and display Histogram of Oriented Gradient Features for single face
person = 5;
[hogFeature, visualization]= ...
extractHOGFeatures(read(training(person),1));
figure;
subplot(2,1,1);imshow(read(training(person),1));title('Input Face');
subplot(2,1,2);plot(visualization);title('HoG Feature');
%%Extract HOG Features for training set
trainingFeatures = zeros(size(training,2)*training(1).Count,length(hogFeature));
featureCount = 1;
for i=1:size(training,2)
for j = 1:training(i).Count
trainingFeatures(featureCount,:) = extractHOGFeatures(read(training(i),j));
trainingLabel{featureCount} = training(i).Description;
featureCount = featureCount + 1;
end
personIndex{i} = training(i).Description;
end
%%Create 40 class classifier using fitcecoc
faceClassifier = fitcecoc(trainingFeatures,trainingLabel);
Error message:
Error using classreg.learning.FullClassificationRegressionModel.prepareDataCR (line 210)
X and Y do not have the same number of observations.
Error in classreg.learning.classif.FullClassificationModel.prepareData (line 487)
classreg.learning.FullClassificationRegressionModel.prepareDataCR(...
Error in classreg.learning.FitTemplate/fit (line 213)
this.PrepareData(X,Y,this.BaseFitObjectArgs{:});
Error in ClassificationECOC.fit (line 116)
this = fit(temp,X,Y);
Error in fitcecoc (line 319)
obj = ClassificationECOC.fit(X,Y,ecocArgs{:});
Error in SimpleFaceRecognition (line 49)
faceClassifier = fitcecoc(trainingFeatures,trainingLabel);
댓글 수: 2
Saira
2020년 3월 11일
How can I solve this error?
Error:
Subscripted assignment dimension mismatch.
trainingLabel(featureCount,:) = TrainingimgSets(i).Description;
Thanks
Walter Roberson
2020년 3월 11일
TrainingimgSets(i).Description is unlikely to happen to be a column vector of character or numbers or string objects. The Description field of a dataset is usually some text that talks about the purpose or origin of the data set.
채택된 답변
Walter Roberson
2018년 4월 2일
The most common cause of this message for the classifiers is that you need to transpose the first parameter, X.
댓글 수: 36
Chidiebere Ike
2018년 4월 2일
편집: Walter Roberson
2018년 4월 2일
Thanks Walter. I will appreciate if you kindly guide me on how to do this. I did transposed my first parameter trainingFeatures using the lines of code below but still got errors.
My error message reads:
Error using classreg.learning.FullClassificationRegressionModel.prepareDataCR (line 210)
X and Y do not have the same number of observations.
Error in classreg.learning.classif.FullClassificationModel.prepareData (line 487)
classreg.learning.FullClassificationRegressionModel.prepareDataCR(...
Error in classreg.learning.FitTemplate/fit (line 213)
this.PrepareData(X,Y,this.BaseFitObjectArgs{:});
Error in ClassificationECOC.fit (line 116)
this = fit(temp,X,Y);
Error in fitcecoc (line 319)
obj = ClassificationECOC.fit(X,Y,ecocArgs{:});
Error in SimpleFaceRecognition (line 50)
faceClassifier = fitcecoc(trainingFeatures,trainingLabel);
%%Create 40 class classifier using fitcecoc
trainingFeatures = trainingFeatures';
faceClassifier = fitcecoc(trainingFeatures,trainingLabel);
Thank you
Chidiebere Ike
2018년 4월 3일
편집: Walter Roberson
2018년 4월 3일
Thanks Walter for you assistance,
From my workspace, my trainingFeatures and trainingLabel are:
trainingFeatures : 700*8100 double
trainingLabel : 1*679 cell
I have attached a screenshot.
What are the likely solution to this errors ?
I will appreciate your response and suggestions.
Thank you
mekia
2020년 2월 13일
am also get the same error message like above when am running genetic algorithm for feature selection on pima diabete.please any one have there to fix the broblem below
Error using classreg.learning.FullClassificationRegressionModel.prepareDataCR (line 210)
X and Y do not have the same number of observations.
Error in classreg.learning.classif.FullClassificationModel.prepareData (line 487)
classreg.learning.FullClassificationRegressionModel.prepareDataCR(...
Error in ClassificationKNN.prepareData (line 878)
prepareData@classreg.learning.classif.FullClassificationModel(X,Y,varargin{:},'OrdinalIsCategorical',true);
Error in classreg.learning.FitTemplate/fit (line 213)
this.PrepareData(X,Y,this.BaseFitObjectArgs{:});
Error in ClassificationKNN.fit (line 863)
this = fit(temp,X,Y);
Error in fitcknn (line 261)
this = ClassificationKNN.fit(X,Y,RemainingArgs{:});
Error in jFitnessFunction>jwrapperKNN (line 20)
Model=fitcknn(feat,label,'NumNeighbors',k,'Distance','euclidean');
Error in jFitnessFunction (line 15)
fitness=jwrapperKNN(feat(:,X==1),label,k,kfold);
Error in jGA (line 39)
fit(i)=fun(feat,label,X(i,:));
Error in Main (line 31)
[sFeat,Sf,Nf,curve]=jGA(feat,label,N,T,CR,MR);
Walter Roberson
2020년 2월 13일
You should probably use the debugger to figure out what sizes are being passed in.
The most common cause of this problem is accidentally passing in the transpose of the way the feature data is expected. Some routines that work with this kind of data need each column to correspond to a different feature, with the rows corresponding to different samples, but other routines need the rows to correspond to different features, with the columns corresponding to different samples. It is easy to make a mistake about this; I know that I get it wrong more than half the time myself.
mekia
2020년 2월 14일
thank you so much sir for your helpful assistance. you are t right am fix and get the solution.again thanks so much mr. walter.
mekia
2020년 3월 12일
any one having a matlab code that accept a new data from user and then testing a machine learning trained model using user data please share me.
Walter Roberson
2020년 3월 12일
The machine learning functions do not care where the data came from, so this task can be divided into two parts, one of which is the user interface to get data from the user, and the second of which is invoking the machine learning routines on whatever data is present in memory.
There are different ways to interface with the the user to get data, depending on what you would like it to look like. For example you could put up a uitable and let the user fill out the entries. I would however suggest to you that users would quickly lose interest in typing in data, so an interface that permitted loading from file might be more appropriate.
mekia
2020년 3월 17일
thank you very much sir for your helpfull suggestion!i agree with your suggest that convince me.
mekia
2020년 3월 17일
please debug this code. am try to split pima diabetes dataset with total of 768 into 538 instance for training set,115 for validation set and the rest 115 for test set but the below code cant split like that please help me i don no what is my mistake?
function data=LoadData()
data=load('pima diabetes_dataset');
Inputs=data.Inputs';
Targets=data.Targets';
Targets=Targets(:,1);
nSample=size(Inputs,1);
% Shuffle Data
S=randperm(nSample);
Inputs=Inputs(S,:);
Targets=Targets(S,:);
% Train Data
pTrain=0.7;
nTrain=round(pTrain*nSample);
TrainInputs=Inputs(1:nTrain,:);
TrainTargets=Targets(1:nTrain,:);
% Validation Data
pvalid=0.15;
nvalid=round(pvalid*nSample);
ValInputs=Inputs(nvTrain+1:nvalid,:);
ValTargets=Targets(nTrain+1:nvalid,:);
% Test Data
TestInputs=Inputs(nvalid+1:end,:);
TestTargets=Targets(nvalid+1:end,:);
% Export
data.TrainInputs=TrainInputs;
data.TrainTargets=TrainTargets;
data.ValInputs=ValInputs;
data.ValTargets=ValTargets;
data.TestInputs=TestInputs;
data.TestTargets=TestTargets;
end
Walter Roberson
2020년 3월 18일
ValInputs=Inputs(nvTrain+1:nvalid,:);
nvTrain does not exist as a variable. I suspect you mean nTrain .
Corrected code:
ValInputs = Inputs(nTrain+1:nTrain+nvalid,:);
ValTargets = Targets(nTrain+1:nTrain+nvalid,:);
% Test Data
TestInputs = Inputs(nTrain+nvalid+1:end,:);
TestTargets=Targets(nTrain+nvalid+1:end,:);
mekia
2020년 3월 19일
thanks so much sir. i get a solution. you are correcting my code thank you sir again!
mekia
2020년 3월 19일
am try to plot confusion matrix for adaptive neuro-fuzzy inference system(anfis). i want to call plotconfusions function in to main class but i cant afford it and the code below can run with out any result or i mean never stop running unless am pause run. here i attach both class(main.m & plotconfusions.m) please help me by debug these code.thank you for you help sir.
%main.m
clear;
close all;
%% Load Data
data=LoadData();
%% Generate Basic FIS
fis=CreateInitialFIS(data,10);
%% Results
% Train Data
TrainOutputs=evalfis(data.TrainInputs,fis);
PlotResults(data.TrainTargets,TrainOutputs,'Train Data');
plotconfusions(data.TrainTargets,TrainOutputs,'Train Data');
% Valid Data
ValOutputs=evalfis(data.ValInputs,fis);
PlotResults(data.ValTargets,ValOutputs,'Valid Data');
Plotconfusions(data.ValTargets,ValOutputs,'Test Data');
% Test Data
TestOutputs=evalfis(data.TestInputs,fis);
PlotResults(data.TestTargets,TestOutputs,'Test Data');
Plotconfusions(data.TestTargets,TestOutputs,'Test Data');
%overall Data
overallOutputs=evalfis(data.Inputs,fis);
PlotcResults(data.Targets,overallOutputs,'overall Data');
Plotconfusions(data.Targets,overallOutputs,'overall Data');
%plotconfusions.m
close all
clear variable
clc
function plotconfusion(tTrn, yTrn,tval,yval, tTst, yTst,tAll,yAll)
data=load('dmdataset');
Inputs=data.Inputs';
Targets=data.Targets';
Targets=Targets(:,1);
% Training Confusion Plot Variables
yTrn = data.TrainOutputs;
tTrn = data.TrainTargets;
%validation confusion plot variables
yval = data.ValOutputs;
tval = data.ValTargets;
% Test Confusion Plot Variables
yTst = data.TestsOutput;
tTst = data.TestTarget;
%all data Confusion Plot Variables
yAll = Inputs;
tAll = Targets;
end
Walter Roberson
2020년 3월 19일
plotconfusions(data.TrainTargets,TrainOutputs,'Train Data');
okay, that calls plotconfusions with three inputs
Plotconfusions(data.ValTargets,ValOutputs,'Test Data');
That is three inputs again, but that is Plotconfusions, with capital P, which is a different function than plotconfusions (lower-case P)
function plotconfusion(tTrn, yTrn,tval,yval, tTst, yTst,tAll,yAll)
but that is 8 inputs?
... none of which are used as inputs in the function ??
And no plotting is done??
mekia
2020년 3월 20일
still no plotting .i make both lower case and am changing the code like this:
clc;
clear;
close all;
%% Load Data
data=LoadData();
%% Generate Basic FIS
fis=CreateInitialFIS(data,10);
%% Results
% Train Data
TrainOutputs=evalfis(data.TrainInputs,fis);
PlotResults(data.TrainTargets,TrainOutputs,'Train Data');
Plotconfusions(data.TrainTargets,TrainOutputs,'Train Data');
% Valid Data
ValOutputs=evalfis(data.ValInputs,fis);
PlotResults(data.ValTargets,ValOutputs,'Valid Data');
Plotconfusions(data.ValTargets,ValOutputs,'valid Data');
% Test Data
TestOutputs=evalfis(data.TestInputs,fis);
plotResults(data.TestTargets,TestOutputs,'Test Data');
plotconfusions(data.TestTargets,TestOutputs,'Test Data');
% overall Data
overallOutputs=evalfis(data.Inputs,fis);
plotResults(data.Targets,overallOutputs,'overall Data');
plotconfusions(data.Targets,overallOutputs,'overall Data');
%plotconfusion.m
close all
clear variable
clc
function plotconfusion(Targets,Inputs,name)
data=load('dmdataset');
% Training Confusion Plot Variables
Inputs=evalfis(data.TrainInputs,fis);
Targets = data.TrainTargets;
%validation confusion plot variables
Inputs=evalfis(data.ValInputs,fis);
Targets = data.ValTargets;
% Test Confusion Plot Variables
Inputs=evalfis(data.TestInputs,fis);
Targets = data.TestTarget;
%all data Confusion Plot Variables
Inputs=evalfis(data.TrainInputs,fis);
Targets=data.Targets;
end
Walter Roberson
2020년 3월 20일
Are you aware that in MATLAB, if you have a variable name in the input parameters section, the right hand side after the function name, and inside the function you assign a value to the (entire) variable, that the change has no effect on the calling function? Inside functions, any change you make to an entire variable is made only locally inside the function and discarded when the function returns.
Furthermore, the same thing happens if you modify part of a variable that is input, with one exception:
If you pass the handle to an object on input, and you modify a property of the handle object, then you do affect the calling environment. For example, if you pass gca() to a function and inside the function you change the XTicks property of the handle, then the change is made permanently to the graphics object. However this does not apply unless you are passed a handle: it does not apply if you are passed a struct for example.
Now reread your function definition and try to figure out why you are ignoring the data passed in, and you are assigning to local variables that you do nothing with, and especially you need to decide why your function is not plotting anything.
Also, you still have two calls to Plotconfusions with a capital P
mekia
2020년 3월 21일
i cant identify a logic behind the function call please sir may i ask you kindly to make me correct the area that's cause error in assigning of local and global variable when i create plotconfusion fuction.
Walter Roberson
2020년 3월 21일
편집: Walter Roberson
2020년 3월 21일
clc;
clear;
close all;
%% Load Data
data=LoadData();
%% Generate Basic FIS
fis=CreateInitialFIS(data,10);
%% Results
% Train Data
TrainOutputs=evalfis(data.TrainInputs,fis);
PlotResults(data.TrainTargets,TrainOutputs,'Train Data');
function_that_does_useless_things(data.TrainTargets,TrainOutputs,'Train Data');
% Valid Data
ValOutputs=evalfis(data.ValInputs,fis);
PlotResults(data.ValTargets,ValOutputs,'Valid Data');
function_that_does_useless_things(data.ValTargets,ValOutputs,'valid Data');
% Test Data
TestOutputs=evalfis(data.TestInputs,fis);
plotResults(data.TestTargets,TestOutputs,'Test Data');
function_that_does_useless_things(data.TestTargets,TestOutputs,'Test Data');
% overall Data
overallOutputs=evalfis(data.Inputs,fis);
plotResults(data.Targets,overallOutputs,'overall Data');
function_that_does_useless_things(data.Targets,overallOutputs,'overall Data');
%function_that_does_useless_things.m
%close all
%clear variable
%clc
function function_that_does_useless_things(Targets,Inputs,name)
data=load('dmdataset');
% Training Confusion Plot Variables
Inputs=evalfis(data.TrainInputs,fis);
Targets = data.TrainTargets;
%validation confusion plot variables
Inputs=evalfis(data.ValInputs,fis);
Targets = data.ValTargets;
% Test Confusion Plot Variables
Inputs=evalfis(data.TestInputs,fis);
Targets = data.TestTarget;
%all data Confusion Plot Variables
Inputs=evalfis(data.TrainInputs,fis);
Targets=data.Targets;
end
mekia
2020년 3월 21일
is that possible sir plotting confusion matrix for each of them( am mean for training ,for validation,for testing) in matlab? the programming code available in mathlab help center most of them are done only in test-predicted.so that i can try code with respect to my work. here is the modifed code accourding to your comment.
%plotconfusion.m
close all
clear variable
clc
data=load('dmdataset');
Targets=data.Targets;%declare global variable
Inputs=data.Inputs;
% Training Confusion Plot Variables
Inputs=evalfis(data.TrainInputs,fis);
Targets = data.TrainTargets;
%validation confusion plot variables
Inputs=evalfis(data.ValInputs,fis);
Targets = data.ValTargets;
% Test Confusion Plot Variables
Inputs=evalfis(data.TestInputs,fis);
Targets = data.TestTarget;
%all data Confusion Plot Variables
Inputs=evalfis(data.TrainInputs,fis);
Targets=data.Targets;
function plotconfusion(Targets,Inputs,name)
end
mekia
2020년 3월 21일
and also am modify main.m class depend on your coment.still not done
clc;
clear;
close all;
%% Load Data
data=LoadData();
%% Generate Basic FIS
fis=CreateInitialFIS(data,10);
%% Results
% Train Data
TrainOutputs=evalfis(data.TrainInputs,fis);
PlotResults(data.TrainTargets,TrainOutputs,'Train Data');
% Valid Data
ValOutputs=evalfis(data.ValInputs,fis);
PlotResults(data.ValTargets,ValOutputs,'Valid Data');
% Test Data
TestOutputs=evalfis(data.TestInputs,fis);
PlotResults(data.TestTargets,TestOutputs,'Test Data');
% overall Data
overallOutputs=evalfis(data.overallInputs,fis);
PlotResults(data.overallTargets,overallOutputs,'overall Data');
%plot confusion
plotconfusions(data.TrainTargets,TrainOutputs,'Train Data');
plotconfusions(data.ValTargets,ValOutputs,'valid Data');
plotconfusions(data.TestTargets,TestOutputs,'Test Data');
plotconfusions(data.overallTargets,overallOutputs,'overall Data');
Walter Roberson
2020년 3월 21일
function plotconfusions(Targets, Outputs, name)
unique_classes = unique([Targets(:); Outputs(:)]);
numclasses = length(unique_classes);
for K = 1 : numclasses
this_class = unique_classes(K);
true_positive(K) = nnz(Targets == this_class & Outputs == this_class);
false_positive(K) = nnz(Targets ~= this_class & Outputs == this_class);
false_negative(K) = nnz(Targets == this_class & Outputs ~= this_class);
true_negative(K) = nnz(Targets ~= this_class & Outputs ~= this_class);
end
%now that you have the statistics per class, do some plotting
fig = figure();
ax = axes('Parent', fig);
x = 1 : numclasses;
scatter(ax, x, true_positive, '+g');
hold(ax, 'on');
scatter(ax, x, true_negative, '-g');
scatter(ax, x, false_positive, '^r');
scatter(ax, x, false_negative, 'vr');
hold(ax, 'off');
xticks(ax, x);
xticklabels(ax, unique_classes);
title(name);
end
mekia
2020년 3월 22일
display the below error message and also the plotting look like this:
Error using scatter (line 130)
There is no LineStyle property on the Scatter class.
Error in plotconfusions (line 17)
scatter(ax, x, true_negative, '-g');
Error in main (line 32)
plotconfusions(data.TrainTargets,TrainOutputs,'Train Data');
>> plotconfusions
Not enough input arguments.
Error in plotconfusions (line 2)
unique_classes = unique([Targets(:); Outputs(:)]);
mekia
2020년 3월 22일
my intension is do confusion matrix for example just like neural network confusion matrix.
Walter Roberson
2020년 3월 22일
scatter(ax, x, true_negative, '-g');
Should be
scatter(ax, x, true_negative, '*g');
Your output seems to indicate that you have over 500 different classes??
I wonder if your outputs are control levels of some kind, rather than classifications? Confusion plots do not apply unless your outputs are class numbers that are either correct or incorrect. For example if you are trying to predict motor speed to use, then confusion matrix would only apply if the motor speed had to exactly right or else would be considered wrong; confusion matrix is not suitable for the case where the predicted motor speed is wrong by just a little and that is to be considered "close enough"
mekia
2020년 3월 22일
my class is binary class which encode in 0( mean healthy) or 1 (sick) therefore i have 500 healthy instance and 278 sick instace in pima diabetes dataset.when am train neural network using pima dataset then am getting result just like above posted confusion ploting, now am try to improve the 82% accuracy am using hybrid method called adaptive neuro-fuzzy inference system in the same dataset( pima diabetes dataset) but i can't get cofusion matrix just like that even now am change scatter(ax, x, true_negative, '*g'); the result is the following.
Walter Roberson
2020년 3월 22일
plotconfusion with no final s is present in the Neural Network toolbox since r2008b. The classification functions you are using are from after that release.
Anyhow, see https://www.mathworks.com/matlabcentral/fileexchange/64185-plot-confusion-matrix
mekia
2020년 3월 23일
when am try to train anfis using dmpdataset workspace with 2 variable (Inputs and Outputs) then the following error will be get at line of code 2 which say
Undefined function or variable 'dmpdataset'.
here is code i cant find what my mistake at line 2 please if it possible debug line2 code.thank you for your help!
load dmpdataset;
fis = anfis(dmpdataset);
Walter Roberson
2020년 3월 23일
The only dmpdataset I find is
https://github.com/dbpedia/dataid/blob/master/dataid_to_datahub_mapper/DatahubDataidMappingService/OntologyObjectMapping/src/main/java/org/aksw/dataid/dmpExtension/DmpDataset.java
I have no reason to expect you would be able to load a dataset by that name in MATLAB
Walter Roberson
2020년 3월 23일
Try
load dmpdataset.dat;
Yes, there are big differences between mat and dat files.
mekia
2020년 3월 25일
am working preprocessing using Pima datase (thttps://www.kaggle.com/kumargh/pimaindiansdiabetescsv) and also am using class based mean preprocessing method for each input variable with respect to class( o or 1)and getting some error such as:
Error using fillmissing/parseInputs (line 361)
Fill method must be 'constant', 'previous', 'next', 'nearest', 'linear', 'spline', 'pchip', 'movmean', or 'movmedian'.
Error in fillmissing (line 116)
[A,AisTable,intM,intConstOrWinSize,extM,x,dim,dataVars] = parseInputs(A,fillMethod,varargin{:});
Error in prep1 (line 4)
data.Pregnancies(class_1)=fillmissing(data.Pregnancies,(class_1),'constant',class_1_mean_Pregnancies);
the code are found in below please debug my mistake if you have a little bit time.thank you for kindly accept my request.
with regard!
load ('pimadatapre.mat');
class_1=categorical(data.Outcome)=="o";
class_1_mean_Pregnancies = mean(data.Pregnancies(class_1), 'omitnan');
data.Pregnancies(class_1)=fillmissing(data.Pregnancies,(class_1),'constant',class_1_mean_Pregnancies);
class_2=categorical(data.Outcome)=="1";
class_2_mean_Pregnancies = mean(data.Gulcose(class_2), 'omitnan');
data.Pregnancies(class_2)=fillmissing(data.Gulcose,(class_2),'constant',class_2_mean_Pregnancies);
class_1=categorical(data.Outcome)=="o";
class_1_mean_Gulcose = mean(data.Gulcose(class_1), 'omitnan');
data.Gulcose(class_1)=fillmissing(data.Gulcose,(class_1),'constant',class_1_mean_Gulcose);
class_2=categorical(data.Outcome)=="1";
class_2_mean_Gulcose = mean(data.Gulcose(class_2), 'omitnan');
data.Gulcose(class_2)=fillmissing(data.Gulcose,(class_2),'constant',class_2_mean_Gulcose);
class_1=categorical(data.Outcome)=="o";
class_1_mean_BloodPressure = mean(data.BloodPressure(class_1), 'omitnan');
data.BloodPressure(class_1)=fillmissing(data.BloodPressure,(class_1),'constant',class_1_mean_BloodPressure);
class_2=categorical(data.Outcome)=="1";
class_2_mean_BloodPressure = mean(data.BloodPressure(class_2), 'omitnan');
data.BloodPressure(class_2)=fillmissing(data.BloodPressure,(class_2),'constant',class_2_mean_BloodPressure);
class_1=categorical(data.Outcome)=="o";
class_1_mean_SkinThickness = mean(data.BloodPressure(class_1), 'omitnan');
data.SkinThickness(class_1)=fillmissing(data.BloodPressure,(class_1),'constant',class_1_mean_SkinThickness);
class_2=categorical(data.Outcome)=="1";
class_2_mean_SkinThickness = mean(data.BloodPressure(class_2), 'omitnan');
data.SkinThickness(class_2)=fillmissing(data.BloodPressure,(class_2),'constant',class_2_mean_SkinThickness);
class_1=categorical(data.Outcome)=="o";
class_1_mean_BMI = mean(data.BMI(class_1), 'omitnan');
data.BMI(class_1)=fillmissing(data.BMI,(class_1),'constant',class_1_mean_BMI);
class_2=categorical(data.Outcome)=="1";
class_2_mean_BMI = mean(data.BMI(class_2), 'omitnan');
data.BMI(class_2)=fillmissing(data.BMI,(class_2),'constant',class_2_mean_BMI);
Walter Roberson
2020년 3월 25일
data.Pregnancies(class_1)=fillmissing(data.Pregnancies,(class_1),'constant',class_1_mean_Pregnancies);
has an extra comma.
data.Pregnancies(class_1)=fillmissing(data.Pregnancies(class_1),'constant',class_1_mean_Pregnancies);
mekia
2020년 3월 26일
but till now display the following error:
Error using fillmissing/checkConstantsSize (line 466)
Fill constant must be empty.
Error in fillmissing/parseInputs (line 444)
intConstOrWindowSize = checkConstantsSize(A,AisTable,false,intConstOrWindowSize,dim,dataVars,'');
Error in fillmissing (line 116)
[A,AisTable,intM,intConstOrWinSize,extM,x,dim,dataVars] = parseInputs(A,fillMethod,varargin{:});
mekia
2020년 3월 26일
편집: mekia
2020년 3월 26일
first am down load data and replace all zero by blank then am done import by click on matlab import data button method from file location. is there any problem make blank the missing field and import to matlab.or else is there any other method that apply instead of these.
Walter Roberson
2020년 3월 26일
Error using fillmissing/checkConstantsSize (line 466)
Fill constant must be empty.
You get that error message when you pass in an empty array as the first parameter to fillmissing() and you use 'constant' and the constant is not empty.
추가 답변 (1개)
mekia
2020년 2월 15일
편집: Walter Roberson
2020년 2월 16일
load fsdmdata.mat
% x = inputs, t = targets, y = outputs
% Train the Network
[net, tr] = train(net, x, t);
% Training Confusion Plot Variables
yTrn = net(x(:,tr.trainInd));
tTrn = t(:,tr.trainInd);
% Validation Confusion Plot Variables
yVal = net(x(:,tr.valInd));
tVal = t(:,tr.valInd);
% Test Confusion Plot Variables
yTst = net(x(:,tr.testInd));
tTst = t(:,tr.testInd);
% Overall Confusion Plot Variables
yAll = net(x);
tAll = t;
% Plot Confusion
plotconfusion(tTrn, yTrn, 'Training', tVal, yVal, 'Validation', tTst, yTst, 'Test', tAll, yAll, 'Overall')
am new user for ANFIS so when runing the above code to do anfis confusion matrix by using train, valiation and test data then the following error display .any one are there to debugg this problem please.
Error using anfis>validateTrainin
gData (line 74)
Expected TrainingData to be one of these types:
double, single, uint8, uint16, uint32, uint64, int8, int16, int32, int64
Error in anfis (line 62)
validateTrainingData(trn_data);
댓글 수: 3
Walter Roberson
2020년 2월 15일
편집: Walter Roberson
2020년 2월 15일
What is class(x) and class(t) ?
Note that routine cannot handle categorical data or cell array of character vectors or string array.
mekia
2020년 2월 16일
ANFIS structure button not active or not display neuro-fuzzy model design for training data. please suggest me the the solution if it is neccessary see my anfis toolbox GUI screen shot.
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)