Null space vs eigenvectors
조회 수: 3 (최근 30일)
이전 댓글 표시
Below is a code I ran to compare the null space & the eigenvectors of matrix A. Please correct me if I am wrong, but I thought that the eigenvectors are the same as the null space for the matrix [A-D(n,n)*I]. Unfortunately, my results do not seem to support that premise. What do I have wrong?
A=[[14 8 -19];[-40 -25 52];[-5 -4 6]];
[V,D]=eig(A);
Vnull=null(A-D(1,1)*eye(3));
Vnull=[null(A-D(1,1)*eye(3)) null(A-D(2,2)*eye(3)) null(A-D(3,3)*eye(3))];
Vchek=[V Vnull];
댓글 수: 0
채택된 답변
David Goodmanson
2017년 6월 10일
편집: David Goodmanson
2017년 6월 10일
Hi Jeff, Since your eigenvalues are all distinct, what you have is basically correct. It's just that the eigenvector and the null vector don't have to be identical, merely proportional. Taking the first column of both Vnull and V and dividing element by element shows proportionality
>> V(:,1)./Vnull(:,1)
ans =
0.7071 - 0.7071i
0.7071 - 0.7071i
0.7071 - 0.7071i
and the same is true for the other two columns.
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Operating on Diagonal Matrices에 대해 자세히 알아보기
제품
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!