Estimates from Gaussian Process regression (function: `fitgpr`) for given set of hyperparameter
조회 수: 3 (최근 30일)
이전 댓글 표시
I am interested in estimating y using Gaussian Process for given hyperparameters and noise parameter i.e. without optimizing for parameters.
In the following example; [3.5, 6.2, 0.2] are provided as initial guess parameters,
load(fullfile(matlabroot,'examples','stats','gprdata2.mat'))
sigma0 = 0.2;
kparams0 = [3.5, 6.2];
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
'KernelParameters',kparams0,'Sigma',sigma0);
ypred2 = resubPredict(gprMdl2);
But I am interested in seeing model's response y and other properties (like: loglikelihood) precisely for parameters [3.5, 6.2, 0.2] not for optimized ones.
Thanks
댓글 수: 0
채택된 답변
Gautam Pendse
2017년 5월 20일
Hi Pankaj,
You probably want to use 'FitMethod','none' in the call to fitrgp. For more info, have a look at the doc for 'FitMethod':
https://www.mathworks.com/help/stats/fitrgp.html#namevaluepairarguments
Hope this helps,
Gautam
댓글 수: 0
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Gaussian Process Regression에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!