How to use rbf_kernel parameters with svmtrain() and svmclassify() for svm classification

조회 수: 9 (최근 30일)
By using linear kernel I got the result using svmtrain() and svmclassify() function. But the result obtained is not so accurate. When I used rbf_kernel I got an error as follows. Please help me how to use parameters with example
>> load fisheriris >> data = [meas(:,1), meas(:,2)]; >> groups = ismember(species,'setosa'); >> [train, test] = crossvalind('holdOut',groups); >> cp = classperf(groups); >> svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
//Error below
>> svmStruct = svmtrain(data(train,:),groups(train),'kernel_function','1'); ??? Error using ==> svmtrain at 266 Unknown Kernel Function 1.

답변 (3개)

Tom Lane
Tom Lane 2012년 3월 28일
From your description, it sounds like you intended
svmStruct = svmtrain(data(train,:),groups(train),'kernel_function','rbf');
In any case, the error message simply means that '1' isn't a valid value to follow the 'kernel_function' parameter name.
  댓글 수: 1
Yasir Mohammed
Yasir Mohammed 2016년 5월 30일
svmStruct =svmtrain(data(train,:),groups(train),'kernel_function','rbf'); i used this but i also have the same error
Error using svmclassify (line 75) Unknown parameter name: kernel_function.
Error in SVMtest (line 14) testresult = svmclassify(svmStructSurprise,testone,'kernel_function','rbf' );
>>

댓글을 달려면 로그인하십시오.


Pratik Oak
Pratik Oak 2013년 3월 22일
Use this:
svmStruct = svmtrain(data(train,:),groups(train),'RBF_Sigma','1')
name of kernel function should be added

Farman Shah
Farman Shah 2018년 8월 14일
편집: Farman Shah 2018년 8월 14일
_ _ _ _ _ _ _ _ _ _ _ * * * * * * * * * *svmStruct =svmtrain(data(train,:),groups(train),'kernel_function','rbf'); i used this but i also have the same error
Error using svmclassify (line 75) Unknown parameter name: kernel_function.
Error in SVMtest (line 14) testresult = svmclassify(svmStructSurprise,testone,'kernel_function','rbf' );
>>**********____
Dear you are getting the error because you are adding 'Kernel_Function', 'polynomial', 'Polyorder', 4 to svmclassify.Add this kernal parameter to the trainsvm function instead..i.e
SVMStruct = svmtrain(features_train,labels_train,'Kernel_Function', 'polynomial', 'Polyorder', 4);
and it will work... _____

카테고리

Help CenterFile Exchange에서 Fourier Analysis and Filtering에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by