How to disable validation and test data set in neural network
조회 수: 3 (최근 30일)
이전 댓글 표시
I need to train patternnet neural network using all data set in the training set and avoiding validation check. I found two methods and they works very well in command line but not in a script returning very simple errors.
method 1:
mynet.divideFcn = '';
method 2:
mynet.divideParam.trainRatio = 1;
mynet.divideParam.valRatio = 0;
mynet.divideParam.testRatio = 0;
and the code:
mynet=patternnet([]);
P=rand(10,1000);
T=rand(2,1000);
[mynet,tr]=train(mynet,P,T);
Matlab R2012 b windows xp 32
Thanks !
댓글 수: 0
답변 (2개)
Greg Heath
2020년 2월 14일
You have to define net before modifying any properties.
clear all, close all, clc
[x,t] = iris_dataset;
for i = 1:2
net = patternnet([]);
if i==1
net.divideFcn = '';
else
net.divideParam.trainRatio = 1;
net.divideParam.valRatio = 0;
net.divideParam.testRatio = 0;
end
net = train(net,x,t);
view(net)
y = net(x);
MSE(i) = mse(y-t)
end
MSE = 0.0084 0.0084
Hope this helps.
Greg
댓글 수: 0
Prasanth Sundaravelu
2018년 4월 26일
편집: Prasanth Sundaravelu
2018년 4월 26일
Hi, I think you need to type specific Divide function, instead of blank.
Try this : mynet.divideFcn = 'dividerand';
댓글 수: 1
참고 항목
카테고리
Help Center 및 File Exchange에서 Image Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!