ANN for constraint optimization problem

조회 수: 4 (최근 30일)
studentU
studentU 2016년 11월 27일
편집: studentU 2016년 12월 1일
hello,
How do i modify my ANN algorithm, by incorporating some constraints to perfom my obtained result. the matlab code used is generated from Neural Network Toolbox.
function [Y,Xf,Af] = ANN_Function(X)
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [-0.964339227389144;-0.906927494859787;-0.9643288955237];
x1_step1_gain = [1.03826501814344;1.06861700687107;1.27340625419393];
x1_step1_ymin = -1;
% Layer 1
b1 = [-1.3371193654695128217;-3.7243723447930885406;0.59020209217794505907;-0.26942 281438778381553;-0.084790990077469749475;-0.287833517416886564;-0.6199588700217847359;0.87036361559242081398;1.1136596091577191103;3.5728692098803582766];
IW1_1 = [0.62172489473929637427 -1.1539538428995010921 0.40749280432490736503;0.33504097052172682192 2.2754223181903578954 -2.0670552187061321803;-0.97421719994837163714 0.16930737512492399777 0.95638889040809083042;3.453458645614659428 2.4120651149524281465 3.9342055592145062093;2.9998512477370034013 2.2723487424133810286 3.3571622229587347874;-1.6838243946405258011 -2.3995748128279066336 0.36244936598086713309;-3.1423700210823852785 1.3845185332230820485 2.4609517018642876884;-0.39703700607817143942 2.4912130193995269956 -0.16941481846512243536;1.406655675671569572 0.92534256006865256428 0.64325984129225455277;1.5085377777493140794 1.4551527878904193525 -1.3090133612083598713];
% Layer 2
b2 = [-0.28647967632293369622;-0.77689684809120063136;0.23567045137827014045;-0.50614562961496167848;0.17775471570313430836;0.39409286123122444501;-0.23743319675300361693];
LW2_1 = [-1.2595809845665446591 0.52253536564831837286 1.6575450213582203496 1.4444644615739332671 -0.79927746466752380705 -0.49440949393277561219 -1.0291039534117272236 -0.10205229528755178914 -1.783179386992490123 0.012007511957539542674;-1.8160587258194498261 0.16525212307258660416 -0.35634974797682900105 0.61911944611294977836 -0.55104180525241264199 0.36270218166368617396 0.70227078264624087645 -0.69192422904692441055 0.63741286998972901401 0.078380036138073788665;-0.39987089599785630156 0.0015263660888982231219 -0.32703999255710186622 -1.0870691355791675115 0.68183572942635206626 0.20086063975571505358 0.53707692508704663048 -0.043958739282595582498 0.30170293659756891591 -0.40387165805595148793;-0.42538078713443683299 -0.41243046298959784579 0.09360967585146644232 -0.54902810742656438237 0.27858672713463300541 0.13466521369669071095 -0.31684402239022979586 -0.016110146899087046668 0.18209067234932024837 -0.38144681930811946691;0.78489623544097297803 0.064197561813166229006 -0.14703146723552590336 0.045763727795912277629 -0.044493781097574965078 0.023102496123388799321 0.19498160438730580135 0.42399577006788119471 0.068627392557574939946 0.2774573470874529546;0.28300904777281810087 -0.040045961378933660202 -0.048322484065649526364 0.23633721304470370339 -0.28761021912207535012 0.22386822762508534757 -0.095795332741767574847 0.31901549272383256106 0.17453188621906071121 -0.40095786179528114523;0.2537157491011907684 -0.037837226082635302959 -0.044856312727524147443 0.24018253583883578117 -0.28974054247799801987 0.23561178051146219881 -0.095989508380685484301 0.30576014862164185848 0.18195538033206490325 0.22157365239611195862];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [1.21212121212121;1.53846153846154;0.8;3.33333333333333;1.66666666666667;2;2];
y1_step1_xoffset = [-0.785398163397448;-0.523598775598299;-0.261799387799149;-0.174532925199433;-0.349065850398866;-0.523598775598299;-0.523598775598299];
% ===== SIMULATION ========
% Format Input Arguments
isCellX = iscell(X);
if ~isCellX, X = {X}; end;
% Dimensions
TS = size(X,2); % timesteps
if ~isempty(X)
Q = size(X{1},1); % samples/series
else
Q = 0;
end
% Allocate Outputs
Y = cell(1,TS);
% Time loop
for ts=1:TS
% Input 1
X{1,ts} = X{1,ts}';
Xp1 =
mapminmax_apply(X{1,ts},x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
Y{1,ts} =
mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
Y{1,ts} = Y{1,ts}';
end
% Final Delay States Xf = cell(1,0); Af = cell(2,0);
% Format Output Arguments if ~isCellX, Y = cell2mat(Y); end end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) y = bsxfun(@minus,x,settings_xoffset); y = bsxfun(@times,y,settings_gain); y = bsxfun(@plus,y,settings_ymin); end
% Sigmoid Symmetric Transfer Function function a = tansig_apply(n) a = 2 ./ (1 + exp(-2*n)) - 1; end
% Map Minimum and Maximum Output Reverse-Processing Function function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) x = bsxfun(@minus,y,settings_ymin); x = bsxfun(@rdivide,x,settings_gain); x = bsxfun(@plus,x,settings_xoffset); end
  댓글 수: 2
Greg Heath
Greg Heath 2016년 11월 29일
Why are you dissatisfied with your current code?
Greg
studentU
studentU 2016년 12월 1일
편집: studentU 2016년 12월 1일
Thank you for your repply,
The current code is made in general case without take into account my fitness function and constraints to obtain the optimal solution!!!
it's work well, but i want to modify it in order to incorpor the constraints.... how can i do it? is it the recurent neural network the best solution in neural network constraint optimizing? Do you have some idea to this perpose?

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by