.mu and .su
조회 수: 1 (최근 30일)
이전 댓글 표시
What do lines 41-42 mean?
% ICS5110 - Applied Machine Learning
% University of Malta
% Lecturer: Dr. George Azzopardi
% Date: 27 October, 2015
function accuracy = NaiveBayesIris(L2norm)
load('irisData.mat');
load('irisLabels.mat');
% Create a random permutation
if exist('randpermlist.mat')
load('randpermlist.mat');
else
randpermlist = randperm(numel(irisLabels));
save randpermlist randpermlist;
end
if L2norm
irisData = normr(irisData);
end
% Split data set into 50% training and 50% testing
ntraining = floor(0.5*numel(irisLabels));
trainingData = irisData(randpermlist(1:ntraining),:);
trainingLabels = irisLabels(randpermlist(1:ntraining));
testingData = irisData(randpermlist(ntraining+1:end),:);
testingLabels = irisLabels(randpermlist(ntraining+1:end));
% Prior class probabilities
uniqueClasses = unique(trainingLabels);
[classidx,classlbl] = grp2idx(trainingLabels);
h = hist(classidx,numel(uniqueClasses));
prior = h./sum(h);
% Likelihood
likelihood.mu = zeros(numel(uniqueClasses),size(trainingData,2)); _/% explanation required_
likelihood.su = zeros(numel(uniqueClasses),size(trthainingData,2)); /% explanation required
for i = 1:numel(uniqueClasses)
idx = find(classidx == i);
likelihood.mu(i,:) = mean(trainingData(idx,:));
likelihood.su(i,:) = std(trainingData(idx,:));
end
% Classification
for i = 1:size(testingData,1)
for j = 1:numel(uniqueClasses)
% Guassian Function Kernel
squaredDifference = (testingData(i,:) - likelihood.mu(j,:)).^2;
normFactor = 1./(sqrt(2*pi)*likelihood.su(j,:));
likelihood.prob = normFactor .* exp(-squaredDifference/(2.*(likelihood.su(j,:).^2)));
%posterior(j) = prod(likelihood.prob) * prior(j);
posterior(j) = sum(log(likelihood.prob)) + log(prior(j));
end
[mx,mxind] = max(posterior);
predictedLabel(i) = classlbl(mxind);
end
accuracy = sum(strcmp(predictedLabel',testingLabels))/numel(testingLabels);
댓글 수: 0
채택된 답변
Walter Roberson
2015년 11월 23일
댓글 수: 2
Walter Roberson
2015년 11월 23일
The mu are means of each class and the su are standard deviations of each class.
추가 답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!