By including a moving window of fixed length in the input vector of MLP, is the Back-propagation ANN equivalent to NAR model?

조회 수: 1 (최근 30일)
If this is the case, how we can add the moving window? Supposing that the lag is equal to 3, for example:
N= lenght(data);
d=timestep ahead;
input = data( 1:N-d); % No transpose;
target = data( 1+d : N );
MSE00 = var(target',1) % Reference MSE
net = fitnet; % default H = 10
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 20/100;
[net tr output error ] = train(net, input, target);
%output = net(input);
error = target - output;
NMSE = mse(error)/MSE00 % Range [ 0 1 ]
R2 = 1- NMSE
Thanks

채택된 답변

Greg Heath
Greg Heath 2015년 11월 15일
1. When you insert code try to make sure it runs.
N= lenght(data); % ERROR
d=timestep ahead; % ERROR
2. Replace TRAIN with ADAPT
Hope this helps.
Thank you for formally accepting my answer
Greg
  댓글 수: 2
coqui
coqui 2015년 11월 18일
thank you Greg.
I only have 1 series, I have used FITNET. To continue beyond the original data (for example, 50 points) how I can do it?
Greg Heath
Greg Heath 2015년 11월 18일
편집: Greg Heath 2015년 11월 18일
I have several posts on predicting data beyond the target region. Let me know if you can't find any of them.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by