solving Ax=b in parallel using GPU cores

조회 수: 2 (최근 30일)
Siba Mohapatra
Siba Mohapatra 2015년 6월 19일
편집: Joss Knight 2015년 6월 19일
I want to solve Ax=b using gpu cores. The matrix A=(f_i(x_j)) and b=(b(x_j)) is constructed by evaluating function over some points. Please suggest how can I use the gpu cores to solve it? Any book article related is also helpful. thanks...
gpuDevice()
ans =
CUDADevice with properties:
Name: 'GeForce GT 740M'
Index: 1
ComputeCapability: '3.5'
SupportsDouble: 1
DriverVersion: 6.5000
ToolkitVersion: 5.5000
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 2.1475e+09
FreeMemory: 2.0033e+09
MultiprocessorCount: 2
ClockRateKHz: 1032500
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1

답변 (1개)

Joss Knight
Joss Knight 2015년 6월 19일
편집: Joss Knight 2015년 6월 19일
If you can form a dense A then do so. Then call
x = gpuArray(A) \ b;
If you need A to remain a function (perhaps it is too big to fit in GPU memory) then currently you can only do this on the CPU using one of the iterative solvers: gmres, cgs, bicg, lsqr etc

카테고리

Help CenterFile Exchange에서 GPU Computing에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by