PID function equivalent from MATLAB to Python

조회 수: 50 (최근 30일)
Fahad
Fahad 2025년 8월 28일 7:00
댓글: Sam Chak 2025년 8월 30일 6:44
I manage to correctly simulate a closed loop with Simulink using pure python "control" library. However, I'm now trying to do the same with a new closed loop that has uses a PID controller:
import numpy as np
import control as ctl
def nuclear_params(array=[0.0001889, 0, -1.289, 0.2891]):
num = array[:2]
den = [1.0] + array[2:]
ref_start = 0
ref_value = 6.6
steps = 700
timestep = 0.5
Kp, Ki, Kd = 348.52, 17.25, 10.79
return simulation_nuclear(
Kp, Ki, Kd, num, den, ref_start, ref_value, timestep, steps
)
def simulation_nuclear(
Kp, Ki, Kd, num_plant, den_plant, ref_start, ref_value, timestep=0.5, steps=700
):
Ts = timestep
Gc = pid_discrete(Kp, Ki, Kd, Ts, N=1000)
Gp = ctl.TransferFunction(num_plant, den_plant, Ts)
fdback = ctl.feedback(Gc * Gp, 1)
# Time vector and input reference step
t = np.linspace(0, steps, int(round(steps / Ts)) + 1)
ref = np.ones_like(t) * ref_value
# System response
t_out, y_out = ctl.forced_response(fdback, T=t, U=ref)
# Retrieve control output
e = ref - y_out
_, u_m = ctl.forced_response(Gc, T=t, U=e)
return t_out, y_out, u_m
With u_m giving:
4610.50075588, 4022.47644969, 3334.11898869, 2705.64516918, 2175.79419241, 1743.04805239
The main problem now is that the control output is more or less DOUBLE of what Matlab gives stumbler number:
2327.93749436396, 2267.04211542563, 2134.18318770832, 1995.12935675866, 1854.49534374506,
This result is most likely the fault of PID approximation function pid_discrete which converts the continuous into discrete and yield the best result for now.
I have tried the following implementations without success:
def pid_continuous(Kp, Ki, Kd, N=1000):
Ti = Kp / Ki
Td = Kd / Kp
s = ctl.TransferFunction.s
Gc = Kp * (1 + 1 / (Ti * s) + (Td * N * s) / (1 + Td * N * s))
return Gc
def pid_discrete(Kp, Ki, Kd, Ts, N=1000, method="tustin"):
Gc_s = pid_continuous(Kp, Ki, Kd, N=N)
return ctl.sample_system(Gc_s, Ts, method=method)
def pid_forward_euler(Kp, Ki, Kd, Ts, N=1000):
z = ctl.TransferFunction.z
if z is None:
raise ValueError("Cannot create z-domain transfer function")
# Forward Euler integrator: IF(z) = Ts*z/(z-1)
integrator = Ts * (z / (z - 1))
# Forward Euler derivative with filter:
# Derivative term: Kd * N * (z-1) / (z + N*Ts - 1)
derivative = (Kd * N * (z - 1)) / (z + N * Ts - 1)
# Parallel form: Kp + Ki*integrator + derivative
pid_controller = Kp + Ki * integrator + derivative
return pid_controller
def pid_backward_euler(Kp, Ki, Kd, Ts, N=1000):
z = ctl.TransferFunction.z
if z is None:
raise ValueError("Cannot create z-domain transfer function")
# Backward Euler integrator: IF(z) = Ts/(z-1)
integrator = Ts / (z - 1)
# Backward Euler derivative with filter
derivative = Kd * N * (z - 1) / (z - 1 + N * Ts)
pid_controller = Kp + Ki * integrator + derivative
return pid_controller
def pid_trapezoidal(Kp, Ki, Kd, Ts, N=1000):
z = ctl.TransferFunction.z
if z is None:
raise ValueError("Cannot create z-domain transfer function")
# Trapezoidal integrator: IF(z) = Ts*(z+1)/(2*(z-1))
integrator = Ts * (z + 1) / (2 * (z - 1))
# Trapezoidal derivative with filter
# This is more complex for trapezoidal - simplified version:
derivative = Kd * 2 * N / (2 + N * Ts) * (z - 1) / z
pid_controller = Kp + Ki * integrator + derivative
return pid_controller
Except for pid_discrete, all of the other functions either explode or gives some error. My question is: there any working implementation of a PID function with python + control library?
  댓글 수: 1
Sam Chak
Sam Chak 2025년 8월 30일 6:44
Is the plant modeled in continuous time or discrete time? I have the same question regarding the PID controller. If possible, could you demonstrate how the control system behaves in MATLAB?
Ts = 0.5;
num = [0.0001889, 0];
den = [1, -1.289, 0.2891];
%% continuous-time transfer function
Gp = tf(num, den)
Gp = 0.0001889 s ---------------------- s^2 - 1.289 s + 0.2891 Continuous-time transfer function.
%% discrete-time transfer function
Gpd = tf(num, den, Ts)
Gpd = 0.0001889 z ---------------------- z^2 - 1.289 z + 0.2891 Sample time: 0.5 seconds Discrete-time transfer function.

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Continuous에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by