moving median with variable window

조회 수: 4 (최근 30일)
Michal
Michal 2024년 9월 23일
댓글: Bruno Luong 2024년 9월 25일
Is there any way how to effectively generalize movmedian function to work with variable window length or local variable k-point median values, where k is vector with the same length as length of input vector (lenght(x) = lenght(k))?
Example:
x = 1:6
k = 2,3,3,5,3,2
M = movmedian_vk(x,k)
M = 1, 2, 3, 4, 5, 5.5
My naive solution looks like:
function M = movmedian_vk(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
  댓글 수: 2
Image Analyst
Image Analyst 2024년 9월 23일
Can you explain the use case? Why do you want to do this?
Michal
Michal 2024년 9월 24일
편집: Michal 2024년 9월 24일
Robust and effective trend extraction in a case of a priori known 1-D signal parts with high slope changes (typicaly by active control of dynamic system). Median filter then used short window in a case of active control and long windows in opposite case.
But after some additional test I learned that this naive approch is not suitable for reliable trend estimation.
Anyway, I will be very happy for any hint how to apply robust median filter on my use case, where separate parts of signal shoud be filtered with different filter windows (something like weighting).

댓글을 달려면 로그인하십시오.

답변 (3개)

Bruno Luong
Bruno Luong 2024년 9월 23일
편집: Bruno Luong 2024년 9월 23일
One way (for k not very large)
x = 1:6
x = 1×6
1 2 3 4 5 6
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
k = [2,3,4,5,3,2]; % Note: I change k(3) to 4
winmedian(x,k)
ans = 1×6
1.0000 2.0000 2.5000 4.0000 5.0000 5.5000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
function mx = winmedian(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
  댓글 수: 7
Matt J
Matt J 2024년 9월 24일
편집: Matt J 2024년 9월 24일
When there are a small number of unique k(i), yes, yours is best. However, more generally, Bruno's is faster:
k = randi(30,1,1e5);
x = rand(1,1e5);
timeit(@() winmedianMichal(x,k))
ans = 0.0579
timeit(@() winmedianBruno(x,k))
ans = 0.0371
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
function mx = winmedianBruno(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
Michal
Michal 2024년 9월 24일
@Matt J Good point...

댓글을 달려면 로그인하십시오.


Matt J
Matt J 2024년 9월 23일
편집: Matt J 2024년 9월 24일
x = rand(1,6)
x = 1×6
0.1034 0.9884 0.6244 0.0233 0.2999 0.6556
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
k = [2,3,3,5,3,2];
n=numel(x);
J=repelem(1:n,k);
I0=1:numel(J);
splitMean=@(vals,G) (accumarray(G(:),vals(:))./accumarray(G(:),ones(numel(vals),1)))';
cc=repelem( round(splitMean( I0,J )) ,k);
zz=min(max(I0-cc+J+1,1),n+2);
vals=[nan,x,nan];
vals=vals(zz);
I=I0-repelem( find(diff([0,J]))-1 ,k);
X=accumarray([I(:),J(:)], vals(:), [max(k),n],[],nan);
M = median(X,1,'omitnan')
M = 1×6
0.1034 0.6244 0.6244 0.6244 0.2999 0.4777
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  댓글 수: 1
Michal
Michal 2024년 9월 24일
Same test as here: ... out of memory

댓글을 달려면 로그인하십시오.


Matt J
Matt J 2024년 9월 24일
편집: Matt J 2024년 9월 24일
Anyway, I will be very happy for any hint how to apply robust median filter on my use case, where separate parts of signal shoud be filtered with different filter windows (something like weighting).
If your movmedian windows are simply varying over a small sequence of consecutive intervals, then the code below shows a little bit of speed-up. It won't give the exact same output near the break points between intervals, but it should be fairly close.
x = rand(1,1e5);
k = 8000*ones(1,1e5);
k(20000:30000) =50;
k(18000:20000) =200;
k(30000:32000) =200;
timeit(@() winmedianMichal(x,k))
ans = 0.0134
timeit(@() winmedianMatt(x,k))
ans = 0.0097
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
%Requires download of groupConsec
%https://www.mathworks.com/matlabcentral/fileexchange/78008-tools-for-processing-consecutive-repetitions-in-vectors
function M = winmedianMatt(x,k)
M=splitapply(@(a,b){movmedian(a,b(1))}, x,k, groupConsec(k));
M=[M{:}];
end
  댓글 수: 5
Michal
Michal 2024년 9월 25일
@Bruno Luong Could you add the reference on the Weiss paper?
Bruno Luong
Bruno Luong 2024년 9월 25일
Done; somehow this Answers forum and firefox have issue when I edit it, must use another browser.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Digital Filtering에 대해 자세히 알아보기

태그

제품


릴리스

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by