Script has no errors, but no plot is given

조회 수: 3 (최근 30일)
Sergio
Sergio 2024년 7월 10일
답변: Mathieu NOE 2024년 7월 10일
Hi , I wonder what is wrong here with the script. Nothinig happens when it should plot something... Can someone help? Thanks
% Constants
hbar = 1.0545718e-34; % Planck's constant
m = 9.10938356e-31; % Electron mass
l = 1; % angular momentum quantum number
E_ion = 1; % Ionization energy, example value
%Functions
function e =exp(r)
% Discretization parameters
r_min = 0.01; % Avoid division by zero
r_max = 10;
N = 100; % Number of grid points
r = linspace(r_min, r_max, N);
dr = r(2) - r(1);
% Initialize the R(r) vector
R = zeros(N, 1);
% Set up the finite difference matrix
A = zeros(N, N);
for i = 3:N-2
A(i, i-2) = -1 / (2 * dr^3);
A(i, i-1) = 2 / (dr^3) - 3 / (r(i) * dr^2);
A(i, i) = -2 / (dr^3) + 3 / (r(i)^2 * dr) + e^(r(i)^2) / (i * hbar^3 / (sqrt(2*m)^3));
A(i, i+1) = -2 / (dr^3) + 3 / (r(i) * dr^2);
A(i, i+2) = 1 / (2 * dr^3);
end
% Apply boundary conditions (example: R(0) = 0 and R(r_max) = 0)
A(1,1) = 1;
A(N,N) = 1;
% Solve the eigenvalue problem
[~, D] = eig(A);
% The eigenvalues are the diagonal elements of D
eigenvalues = diag(D);
% The solution R(r) corresponds to the eigenvector with eigenvalue closest to E_ion
[~, idx] = min(abs(eigenvalues - E_ion));
R = eigvecs(:, idx);
% Plot the solution
plot(r, R);
xlabel('r');
ylabel('R(r)');
title('Radial Wavefunction');
end
  댓글 수: 2
Aquatris
Aquatris 2024년 7월 10일
편집: Aquatris 2024년 7월 10일
You are not calling the function which you called exp() that produces the plot so why do you expect a plot?
Also never use built-in function/variable names as custom function names. exp() already exist in matlab.
Sergio
Sergio 2024년 7월 10일
편집: Sergio 2024년 7월 10일
The problem lies in "A(i, i) = -2 / (dr^3) + 3 / (r(i)^2 * dr) + e^(r(i)^2) / (i * hbar^3 / (sqrt(2*m)^3));" I defined the function exp(r ) since it should be connected to the line here. Should I remove the function calling at the top, and rewrite exp(r(i)^2) instead? Did that, then I got a new error related to eigvecs which is unknown.

댓글을 달려면 로그인하십시오.

채택된 답변

KSSV
KSSV 2024년 7월 10일
% Constants
hbar = 1.0545718e-34; % Planck's constant
m = 9.10938356e-31; % Electron mass
l = 1; % angular momentum quantum number
E_ion = 1; % Ionization energy, example value
%Functions
% Discretization parameters
r_min = 0.01; % Avoid division by zero
r_max = 10;
N = 100; % Number of grid points
r = linspace(r_min, r_max, N);
dr = r(2) - r(1);
% Initialize the R(r) vector
R = zeros(N, 1);
% Set up the finite difference matrix
A = zeros(N, N);
for i = 3:N-2
A(i, i-2) = -1 / (2 * dr^3);
A(i, i-1) = 2 / (dr^3) - 3 / (r(i) * dr^2);
A(i, i) = -2 / (dr^3) + 3 / (r(i)^2 * dr) + exp(r(i)^2) / (i * hbar^3 / (sqrt(2*m)^3));
A(i, i+1) = -2 / (dr^3) + 3 / (r(i) * dr^2);
A(i, i+2) = 1 / (2 * dr^3);
end
% Apply boundary conditions (example: R(0) = 0 and R(r_max) = 0)
A(1,1) = 1;
A(N,N) = 1;
% Solve the eigenvalue problem
[eigvecs, D] = eig(A);
% The eigenvalues are the diagonal elements of D
eigenvalues = diag(D);
% The solution R(r) corresponds to the eigenvector with eigenvalue closest to E_ion
[~, idx] = min(abs(eigenvalues - E_ion));
R = eigvecs(:, idx);
% Plot the solution
plot(r, R);
xlabel('r');
ylabel('R(r)');
title('Radial Wavefunction');

추가 답변 (1개)

Mathieu NOE
Mathieu NOE 2024년 7월 10일
again...
let's fix it
I cannot check here if e^(r(i)^2) (probably wrong) must be replaced by exp(r(i)^2) - I let you double check that point , but that is actually what I did
then, you have to change one more line to define eigvecs
[~, D] = eig(A); => [eigvecs, D] = eig(A);
% Constants
hbar = 1.0545718e-34; % Planck's constant
m = 9.10938356e-31; % Electron mass
l = 1; % angular momentum quantum number
E_ion = 1; % Ionization energy, example value
% Discretization parameters
r_min = 0.01; % Avoid division by zero
r_max = 10;
N = 100; % Number of grid points
r = linspace(r_min, r_max, N);
dr = r(2) - r(1);
% Initialize the R(r) vector
R = zeros(N, 1);
% Set up the finite difference matrix
A = zeros(N, N);
for i = 3:N-2
A(i, i-2) = -1 / (2 * dr^3);
A(i, i-1) = 2 / (dr^3) - 3 / (r(i) * dr^2);
A(i, i) = -2 / (dr^3) + 3 / (r(i)^2 * dr) + exp(r(i)^2) / (i * hbar^3 / (sqrt(2*m)^3));
A(i, i+1) = -2 / (dr^3) + 3 / (r(i) * dr^2);
A(i, i+2) = 1 / (2 * dr^3);
end
% Apply boundary conditions (example: R(0) = 0 and R(r_max) = 0)
A(1,1) = 1;
A(N,N) = 1;
% Solve the eigenvalue problem
[eigvecs, D] = eig(A);
% The eigenvalues are the diagonal elements of D
eigenvalues = diag(D);
% The solution R(r) corresponds to the eigenvector with eigenvalue closest to E_ion
[~, idx] = min(abs(eigenvalues - E_ion));
R = eigvecs(:, idx);
% Plot the solution
plot(r, R);
xlabel('r');
ylabel('R(r)');
title('Radial Wavefunction');

카테고리

Help CenterFile Exchange에서 General Physics에 대해 자세히 알아보기

태그

제품


릴리스

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by