Function to trainNetwork returns an unexpected error

조회 수: 3 (최근 30일)
Ernest Modise - Kgamane
Ernest Modise - Kgamane 2024년 6월 7일
댓글: Matt J 2024년 6월 9일
My code returns the following error for this function call - What is the fix for this?
net = trainNetwork(X_train, categorical(y_train), layers, options);
Error using trainNetwork (line 191)
Too many input arguments.
Error in LSTMGomz (line 63)
net = trainNetwork(X_train, categorical(y_train), layers, options);
Caused by:
Error using nnet.internal.cnn.trainNetwork.DLTInputParser>iParseInputArguments (line 75)
Too many input arguments.
  댓글 수: 2
Matt J
Matt J 2024년 6월 7일
You would have to attach a .mat file providing inputs X_train, categorical(y_train), layers, options for us to run with.

댓글을 달려면 로그인하십시오.

채택된 답변

Matt J
Matt J 2024년 6월 8일
편집: Matt J 2024년 6월 8일
Your X_train and y_train data were in some weird format that trainNetwork cannot recognize. Try this instead,
Xdata = num2cell(readmatrix('LSTMdataIn.xlsx')',1)';
N=200;
train_ratio=0.8;
split_index=round(train_ratio*N);
inputSize = height(Xdata{1}); % Number of features in the input data
numClasses = height(Xdata)/N; % Number of categories
Xdata=reshape(Xdata,N,numClasses);
ydata=repmat(1:numClasses,N,1);
X_train=Xdata(1:split_index,:);
y_train=ydata(1:split_index,:);
X_test=Xdata(split_index+1:end,:);
y_test=ydata(1:split_index+1:end,:);
layers = [
sequenceInputLayer(inputSize)
lstmLayer(100, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
options = trainingOptions('adam', 'MaxEpochs', 100);
net = trainNetwork(X_train(:), categorical(y_train(:)), layers, options);
Training on single CPU. |========================================================================================| | Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning | | | | (hh:mm:ss) | Accuracy | Loss | Rate | |========================================================================================| | 1 | 1 | 00:00:00 | 20.31% | 1.6082 | 0.0010 | | 9 | 50 | 00:00:00 | 79.69% | 0.4997 | 0.0010 | | 17 | 100 | 00:00:00 | 82.81% | 0.2851 | 0.0010 | | 25 | 150 | 00:00:01 | 76.56% | 0.3004 | 0.0010 | | 34 | 200 | 00:00:01 | 79.69% | 0.2844 | 0.0010 | | 42 | 250 | 00:00:01 | 82.81% | 0.2591 | 0.0010 | | 50 | 300 | 00:00:01 | 76.56% | 0.2918 | 0.0010 | | 59 | 350 | 00:00:02 | 79.69% | 0.2794 | 0.0010 | | 67 | 400 | 00:00:02 | 82.81% | 0.2565 | 0.0010 | | 75 | 450 | 00:00:02 | 76.56% | 0.2902 | 0.0010 | | 84 | 500 | 00:00:03 | 79.69% | 0.2782 | 0.0010 | | 92 | 550 | 00:00:03 | 82.81% | 0.2557 | 0.0010 | | 100 | 600 | 00:00:03 | 76.56% | 0.2895 | 0.0010 | |========================================================================================| Training finished: Max epochs completed.
  댓글 수: 3
Ernest Modise - Kgamane
Ernest Modise - Kgamane 2024년 6월 9일
Hi Mat, You have created an interesting data structure for this purpose. I would like to spend time on learning how to configure the data structure. Please send me tops to look at.
Matt J
Matt J 2024년 6월 9일
It's just a cell array of numeric data. You had tables nested inside cells, I think.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

태그

제품


릴리스

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by