Numerical integral where the bounds change with each evaluation

조회 수: 5 (최근 30일)
L'O.G.
L'O.G. 2023년 5월 16일
댓글: Walter Roberson 2023년 5월 16일
I'm trying to take the following integral:
I tried this symbolically, but I think that was throwing me off. I am attaching some numerical data for the function A(t) and the time vector. How would you do this numerically? I imagine it would be something like the following, but I can't quite get it to work.
omega = logspace(-1,1,1000);
fun = @(t,omega) A*sin(omega*t);
for i = 1:1000;
w=omega(i);
f(i) = integral(@(t) fun(t,w),0,2*pi/w);
end
  댓글 수: 3
FannoFlow
FannoFlow 2023년 5월 16일
Does A(t) have a special meaning in this context?
Walter Roberson
Walter Roberson 2023년 5월 16일
A(t) just means that A is a function of t.
It is the expression for some kind of tranform of A(t), but I am not sure what the name of this transform is.

댓글을 달려면 로그인하십시오.

답변 (1개)

Walter Roberson
Walter Roberson 2023년 5월 16일
A = rand
A = 0.8252
omega = logspace(-1,1,1000);
fun = @(t,omega) A*sin(omega*t);
for i = 1:1000;
w=omega(i);
f(i) = integral(@(t) fun(t,w),0,2*pi/w);
end
plot(omega, f)
All of the values are within round-off error of 0.
However... there is a difference between what your mathematical expression shows here, compared to the integral you were calculating there and here.
In previous discussion, A was a constant. In the expression here, A is a function of t. That makes a big difference.
For example,
A = @(t) t.^2 - t + 1;
omega = logspace(-1,1,1000);
fun = @(t,omega) A(t).*sin(omega*t);
for i = 1:1000;
w=omega(i);
FUN = @(t) fun(t,w);
f(i) = integral(FUN,0,2*pi/w);
end
plot(omega, f)
syms t Omega
A = @(t) t.^2 - t + 1;
omega = logspace(-1,1,1000);
fun = @(t,omega) A(t).*sin(omega*t);
F = int(fun(t,Omega), t, 0, 2*pi/Omega)
F = 
f = subs(F, Omega, omega);
plot(omega, f)
  댓글 수: 4
Walter Roberson
Walter Roberson 2023년 5월 16일
"how would you modify it to use a vector of type double which is also a function of t"
Vectors are not functions.
If you have the value of A(t) sampled at particular t, then calculate A(t).*sin(omega*t) at those t, and use trapz() or similar to do numeric integration, making sure to pass in the appropriate t values to trapz()
Walter Roberson
Walter Roberson 2023년 5월 16일
Hmmm, first, could you confirm for me that you want omega to range from -1 to 1, and the bounds of integration is 0 to 2*pi/omega -- and since omega ranges from -1 to +1, that means that for negative omega you want negative upper bound, and you want to go right through to infinite upper bound as omega passes through 0 ?

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Numerical Integration and Differentiation에 대해 자세히 알아보기

제품


릴리스

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by