How to build a function fun that takes as input the matrix A and as output provides the matrix B which is produced out of A in the following ways.

조회 수: 19 (최근 30일)
First A, which is of dimension n, is split into four submatrices of dimension n/2 times n/2. Then the sub matrix in the bottom right coner is switched with the submatrix in the top left corner, whereas the submatrix in the bottom left coner is switched with the submatrix in the top right coner. This is the B matrix.

채택된 답변

Sugandhi
Sugandhi 2023년 3월 20일
Hi Omorodion Solomon,
I understand that you want to build a function that takes matrix A as input and gives matrix B as output , where B is formed after arranging A.
You can solve this as given below:
a=[1 2 3 4;5 6 7 8;9 10 11 12; 13 14 15 16]
a = 4×4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=length(a);
halfn=round(n/2);
a1=a(1:halfn,1:halfn);
a2=a(1:halfn,halfn+1:n);
a3=a(halfn+1:n,1:halfn);
a4=a(halfn+1:n,halfn+1:n);
b=[a4,a3;a2,a1]
b = 4×4
11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6

추가 답변 (3개)

Dyuman Joshi
Dyuman Joshi 2023년 3월 20일
편집: Dyuman Joshi 2023년 3월 20일
A much simpler way -
a=[1 2 3 4;5 6 7 8;9 10 11 12; 13 14 15 16]
a = 4×4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s=size(a)/2;
b=circshift(a,s)
b = 4×4
11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6
  댓글 수: 5
Dyuman Joshi
Dyuman Joshi 2023년 3월 24일
Thanks for the correction and for the resources,8 @Stephen23.
I remember going through the last thread you linked. Did you find an answer to your question posted as a comment on the same question?
Additionally, Is there any information about how exactly the header works or how the modification happens?
Stephen23
Stephen23 2023년 3월 24일
"Is there any information about how exactly the header works or how the modification happens? "
I suspect that the behavior and content of the array header is rather proprietary and subject to change. Usually TMW advises to avoid writing code that relies on such implementation details.
With that in mind, you can find a few clues in the MATLAB documentation:
You can probably find more information in the MXARRAY documentation somewhere.

댓글을 달려면 로그인하십시오.


Matt J
Matt J 2023년 3월 20일
편집: Matt J 2023년 3월 20일
You can use this FEX download,
Example:
>> A=reshape(1:16,4,4), n=length(A)/2;
A =
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
>> B=blkReshape(A,[n,n],1,1,[]);
>> B=blkReshape(B(:,:,[4,3,2,1]),[2,2],[2,2])
B =
11 15 3 7
12 16 4 8
9 13 1 5
10 14 2 6
  댓글 수: 1
Omorodion Solomon
Omorodion Solomon 2023년 3월 20일
I think you forgot to switch the submatrix in the botton left conner with that of the top right conner. Thanks alot. i've made the corrections.

댓글을 달려면 로그인하십시오.


John D'Errico
John D'Errico 2023년 3월 20일
편집: John D'Errico 2023년 3월 20일
Possibly homework. (I never trust simple problems like this, where the goal is simply to move thigns around in a matrix. They are almost always homework assignments.) But you already have two answers, and you have accepted one. So I might as well show the pretty way to solve the problem. You can do it via matrix multiplies. I've built it to perform the swaps using sparse matrices, to make it efficient for large matrices.
The trick is to pre-multiply and post-multiply by a sparsely constructed permutation matrix.
A = reshape(1:16,4,4)'
A = 4×4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A = swapblocks(A)
A = 4×4
11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6
A = rand(5000);
timeit(@() swapblocks(A))
ans = 0.1926
And that seems reasonably fast for a 5kx5k matrix permutation.
Do you see how it works? For the 4x4 mtrix, here is how it works. Constriuct a 4x4 transformation matrix, that looks like this:
T = [zeros(2),eye(2);eye(2),zeros(2)]
T = 4×4
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
See what happens when we multiply T*A.
A = reshape(1:16,4,4)'
A = 4×4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T*A
ans = 4×4
9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8
As you can see, that swaps the blocks from top to bottom. Essentially, it swaps the rows to go from [1 2 3 4] to [3 4 1 2]. Next, when we post multiply by T, it swaps the columns, in the same blockwise fashion.
T*A*T
ans = 4×4
11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6
But of course, swapblocks was written to use a sparse matrix T. That maks the matrix multiplies far more efficient when A is large.
function Aswap = swapblocks(A)
% swaps the 4 corner n by n blocks of a 2*n by 2*n matrix from [1 2;3 4] to [4 3;2 1]
% usage: Aswap = swapblocks(A)
%
% arguments:
% A - any 2n x 2n matrix
% what size is A?
[N,M] = size(A);
if (N~=M) || (mod(N,2)==1)
error('A must be a square matrix with an even number of rows and columns')
end
% build the tranform matrix
n = N/2;
T = speye(n);
S = spalloc(n,n,0);
T = [S,T;T,S];
% the transformation is a simple one
Aswap = T*A*T;
end
Anyway, if this was homework, your teacher will never believe you solved it yourself like this.

카테고리

Help CenterFile Exchange에서 Creating and Concatenating Matrices에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by