Random forest slow optimization
조회 수: 2 (최근 30일)
이전 댓글 표시
Hello,
I am using ranfom forest with greedy optimization and it goes very slow. I don´t want to use the bayesian optimization. I wonder if I can specify the range to check.
Thank you
s = RandStream('mlfg6331_64');
reset(s);
options = statset("UseParallel",true,"UseSubstreams",true,"Streams",s);
myopts = struct('Optimizer','gridsearch','AcquisitionFunctionName','expected-
improvement-plus', 'ShowPlots',false); %'UseParallel',true,
classificationML = fitcensemble(...
predictors, ...
response, ...
'Method', 'Bag', ...
'NumLearningCycles', 100, ...
'Learners', template, ...
'ClassNames', [1; 2],'OptimizeHyperparameters',
{'MaxNumSplits','MinLeafSize'},'HyperparameterOptimizationOptions',
myopts,'Options',options);
댓글 수: 0
채택된 답변
Amal Raj
2023년 3월 14일
Hi,
s = RandStream('mlfg6331_64');
reset(s);
options = statset("UseParallel",true,"UseSubstreams",true,"Streams",s);
myopts = struct('Optimizer','gridsearch','AcquisitionFunctionName','expected-improvement-plus',...
'ShowPlots',false,...
'SearchRange',struct('MaxNumSplits',[1,10],'MinLeafSize',[1,5]));
classificationML = fitcensemble(...
predictors, ...
response, ...
'Method', 'Bag', ...
'NumLearningCycles', 100, ...
'Learners', template, ...
'ClassNames', [1; 2],...
'OptimizeHyperparameters',{'MaxNumSplits','MinLeafSize'},...
'HyperparameterOptimizationOptions',myopts,...
'Options',options);
The SearchRange field specifies a structure with fields for each hyperparameter you want to search. The values of these fields are two-element vectors indicating the minimum and maximum values to search. In this example, the search range for MaxNumSplits is from 1 to 10, and the search range for MinLeafSize is from 1 to 5.
By specifying the search range, you can limit the set of hyperparameters to be searched, which can speed up the optimization process. However, be aware that if the optimal hyperparameters lie outside the specified range, you may not find the best model.
댓글 수: 0
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Classification Ensembles에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!