이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
Expectation of inverse of complex Gaussian variables
조회 수: 6 (최근 30일)
이전 댓글 표시
DDDD
2023년 1월 3일
Hi there, I just have a mathematic problem. If we consider a Gaussian complex random variable vector
, where each element in
follows zeros mean and variance γ. Is there any close form with γ for
? where
is the norm-2 operation. I have asked the same question in MathOverflow at https://mathoverflow.net/questions/436733/expectation-of-inverse-of-complex-gaussian-variables?noredirect=1#comment1125524_436733.




the people in mathoverflow showed that this expectation is infinity mathematically. But in matlab, we can find out that the above expectation can converge to a certain value. So there must be some error that I couldn't find out and misunderstanding. Really appreciate for any comments!
clc;close all;clear all;
num_loop=5000;
N=5;Eh=0;
for i=1:num_loop
h=sqrt(1/2)*(randn(N,1)+1i*randn(N,1));
Eh=Eh+1/norm(h)^2;
end
Eh=Eh/num_loop
댓글 수: 8
Bruno Luong
2023년 1월 3일
편집: Bruno Luong
2023년 1월 3일
People in mathoverflow are correct. Your code does not compute the expextation. It estimates the expectation for random variable that has an expectation, which is NOT the case.
Matt J
2023년 1월 3일
편집: Matt J
2023년 1월 3일
@Bruno Luong Still, though, the empirical means do seem to converge to something as we take more and more samples. It would be good to know if there is a mathematical reason for that, and if that limit can be predicted, even if it is not the statistical mean.
M=1e7;
N=5;
h=sqrt(1/2)*(randn(N,M)+1i*randn(N,M));
x=1./vecnorm(h).^2;
Eh=cumsum(x,2)./(1:M);
loglog(Eh)

Bruno Luong
2023년 1월 3일
편집: Bruno Luong
2023년 1월 3일
@Matt J I think randn cannot capture the math correctness (true), sine it is diverge theoreticlly because normal random variable can get arrbitrally small create singular 1/r close to 0. However for whatever reason, randn rarely create number smaller than this
r=randn(1,1e7);
min(abs(r))
ans = 1.5919e-07
which is very far from arbitrary small to my book. The imperfect of randn() does not matter in most case, matter here.
Note that rand has the same imperfect filling toward 0
r=rand(1,1e7);
min(abs(r))
ans = 5.5373e-08
Paul
2023년 1월 3일
As I understand the linked mathoverflow page, if h is a complex scalar then the expectation is infinite (or does not exist?). But if h is a complex vector, then the expectation is finite.
Bruno Luong
2023년 1월 3일
편집: Bruno Luong
2023년 1월 3일
@Paul, the singularity is 1/r when r goes to 0 for all cases. So the expectation is Inf for all cases as long as P(0) > 0.
John D'Errico
2023년 1월 3일
편집: John D'Errico
2023년 1월 3일
The problem is, if you compute a sample mean from a Monte Carlo simulation, you will get some finite (and random) result. But that does not tell you anything about the population mean. And you are asking how to compute an EXPECTATION, so the population mean. And that has no finite value.
Paul
2023년 1월 3일
편집: Paul
2023년 1월 3일
Then I guess you disagree with the commen on the mathoverflow page?
link to comment (make sure to click on "Show 6 more comments"
채택된 답변
Matt J
2023년 1월 3일
편집: Matt J
2023년 1월 3일
So there must be some error that I couldn't find out and misunderstanding.
The misunderstanding is that the expectation is infinite for
when n=1, but for higher dimensions, it is finite. The general formula can be derived by adapting the material from here, leading to,


The integral can be evaluated for n>1 by integration by parts.
댓글 수: 22
Bruno Luong
2023년 1월 3일
Thinking more I believe you are correct with r^(n-3) = r^-2 * r^(n-1). The first term is from 1/h^2 the second from volumic integration in r. Well done Matt.
Paul
2023년 1월 3일
편집: Paul
2023년 1월 3일
Why do you think there is an error or misunderstanding?
That r^(2n-3) is exactly what's stated in the comments section in the mathoverflow page for the case of vector h. Are you sure that it shouldn't be 2/gamma(N) out front?
N=5;
Gamma = 0.5
Gamma = 0.5000
2/gamma(N)*integral(@(r) exp(-r.^2/2/Gamma).*r.^(2*N-3),0,inf)
ans = 0.2500
Matches result above.
Matt J
2023년 1월 3일
Why do you think there is an error or misunderstanding?
Well, a misunderstanding on our part, because only you seem to have seen the additional comments!
Are you sure that it shouldn't be 2/gamma(N) out front?
Fixed it.
Paul
2023년 1월 3일
Looking through those comments I learned more about LatEx formatting than math!
Looks like there is a closed form solution:
syms r sigma real positive
syms n integer positive
E = int(exp(-r^2/2/sigma^2)*r^(2*n-3),r,0,inf)/sigma^(2*n)/2^(n-1)/gamma(n)
E =

E = simplify(E)
E =

simplify(subs(E,[n sigma],[5 sqrt(1/2)]))
ans =

DDDD
2023년 1월 4일
Thank you all guys for your wonderful arguments, answers and explanantions!!
Now I know that when I have vector
, then the solution of the formula in the question is finite and has closed-form.

Paul
2023년 1월 4일
In your development is there an assumption that all of the random variables are independent? Rerunning the numerical experiment appears to show that assumption makes a difference.
Assume h is 3 x 1, all RVs are independent, standard normal.
M=1e7;
N=3;
sigma = 1;
h = sigma*(randn(N,M)+1i*randn(N,M));
x = 1./vecnorm(h).^2;
Eh = cumsum(x,2)./(1:M);
figure
loglog(Eh)
hold on
Closed form expression, matches blue curve
1/2/sigma^2/(N-1)
ans = 0.2500
Make the real RVs not independent, same for the imaginary RVs.
Sigma = sigma^2*[1 .8 .9; .8 1 .7;.9 .7 1];
Xr = mvnrnd(zeros(1,3),Sigma,M);
Xi = mvnrnd(zeros(1,3),Sigma,M);
h = (Xr + 1i*Xi).';
x = 1./vecnorm(h).^2;
Eh = cumsum(x,2)./(1:M);
loglog(Eh)

Paul
2023년 1월 4일
Alternative derivation, which at heart is probably the same as @Matt J's, but just makes use of known results rather than deriving from scratch.
Let c(x,k) be the pdf of the Chi-square distribution with k degrees of freedom
syms sigma real positive
syms k n integer positive
syms x real positive
c(x,k) = x^(k/2-1)*exp(-x/2)/2^(k/2)/gamma(k/2)
c(x, k) =

Let Xi, i = 1:k be i.i.d. normal random variables with mean = 0 and variance sigma^2.
Let Z = sum(Xi^2). The pdf of Z is then
z(x,k) = c(x/sigma^2,k)/sigma^2;
Let H = 1/Z. The expected value of H is
Eh = simplify(int(simplify(z(x,k)/x),x,0,inf))
Eh =

If the vector h is n x 1, then k = 2*n
Eh = simplify(subs(Eh,k,2*n))
Eh =

Bruno Luong
2023년 1월 4일
Wait a minute, I though the expectation is Inf for n=2 from the integral with r^(n-3) inside the integral, so it diverges like a log. Why I can't see this in the simplified formula?
Paul
2023년 1월 4일
n is the dimension of the vector, not the number of variables, which is 2*n (real + imaginary). So if h is a scalar, then n = 1 and Eh is undefined.
DDDD
2023년 1월 26일
편집: DDDD
2023년 1월 28일
Hi guys@Matt J, @Paul,I have one more question that if the variance of Guassian complex
is random, not fixed, for example, if we consider the exponential delay profile
,where we have a total number of P of τ and they are independently uniformly distributed from
. Then can can we compute the close form
?




DDDD
2024년 10월 15일
@Matt J@Paul Sorry guys I have an add-on question. What if in this question, n > 1, but each entry in
has different variance, i.e.,
, is different for i= 1....n. Here, each entry of
is still complex Gaussian with zero mean. How would the answer presented above changed in this siutation? I still assume there exist a closed-form solution as from the simulation I got fixed results.



Thank you guys so much for your patience!
Paul
2024년 10월 27일
편집: Paul
2024년 10월 27일
If you can find the probability density function for the sum of independent, normal random variables that are not identically distributed, then you can try to proceed as shown above. Maybe there is a closed form expression. As to finding that density function, maybe this link will be of use. I think, but am not positive, that the Generalized Chi-Squared Distribution is what you're looking for.
추가 답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)