Stacking two semi suprvised models

조회 수: 1 (최근 30일)
MAHMOUD EID
MAHMOUD EID 2022년 12월 14일
편집: Rohit 2023년 3월 21일
I have two trained semisuprvised algorithms ( graph based and SVM). How to combine the models together ?

답변 (1개)

Rohit
Rohit 2023년 3월 21일
편집: Rohit 2023년 3월 21일
You can combine two trained semi-supervised algorithms using various methods. Here are some examples of how to implement these methods:
  1. Majority Voting
graph_output = graph_based_algorithm(test_data);
svm_output = svm_algorithm(test_data);
% Combine the outputs using majority voting
ensemble_output = mode([graph_output, svm_output], 2);
2. Model stacking
graph_features = graph_based_algorithm(data);
svm_output = svm_algorithm(graph_features);
Note that these are just examples, and the exact implementation will depend on the specific characteristics of your algorithms and data.
Similarly, you can experiment with different ensemble methods and see what works best for your use case.

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by