train a deep learning model (resnet-50 network) on a remote HPC cluster

조회 수: 9 (최근 30일)
EK_47
EK_47 2022년 10월 14일
댓글: EK_47 2022년 10월 14일
I am trying to run a code, which uses a pre-trained ResNet-50 network, on a remote HPC cluster by submitting batch GPU jobs. I get the following error at this line:
net = resnet50
Error using resnet50
resnet50 requires the Deep Learning Toolbox Model for ResNet-50 Network support
package for the pretrained weights. To install this support package, use the <a
href="matlab:
matlab.addons.supportpackage.internal.explorer.showSupportPackages('RESNET50',
'tripwire')">Add-On Explorer</a>. To obtain the untrained layers, use
resnet50('Weights','none'), which does not require the support package.
It seems the Deep Learning Toolbox Model for ResNet-50 Network add-on is not installed on the cluster. How can I install this add-on on it?
Thanks

채택된 답변

David Willingham
David Willingham 2022년 10월 14일
Just to confirm, you're sending batch jobs to a HPC cluster that has MATLAB parallel server installed?
If so, one option to try would be:
  1. save resnet50 as as MAT file
  2. attach the MAT file when submitting the job
  3. have a load MAT file command in the function you're submitting.
  댓글 수: 1
EK_47
EK_47 2022년 10월 14일
Brilliant! Thank you for your answer. It solved my problem.
Yes, the HPC cluster has MATLAB paraller server installed.
In your point 1, you said "save resnet50 as a MAT file". I was not sure what you mean by "save resnet50". What I did was just I called it in MATLAB on my local machine
basenet = resnet50;
then saved it as
save('basenet.mat','basenet');
and then transferred this MAT file into the remote cluster and loaded it there.
Thanks

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

제품


릴리스

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by