where the jump of the phase function happen?

조회 수: 35 (최근 30일)
Aisha Mohamed
Aisha Mohamed . 2022년 9월 6일
댓글: Aisha Mohamed . 2023년 4월 10일
I know that (if Iam correct), phase(f(z)) =arctan(f(z)) ,(where f(z) is complex number ) is multivalued function, that means for example if arctan(f(z))= x, there is infinite number of angles (x) has the same tan value = the value f(z). So if we want to make arctan continuous we have to ristrect the rang of this function in this interval (-pi/2 pi/2). where z=x+iy
My questions are:
1- How can I determined the points where the jump happen? are they when the real part of complex number=0?(but phase =arcta(y/x)= arctan (y/0) =pi/2)
2-why when I plotted the phase of the function f(z) in this interval (-pi/2 pi/2) , I still have the same jump which appear as discontinuity of the phase of the function f(z)?
I use this code
re_z = -pi/2:0.01:pi/2;
im_z = -pi/2:0.01:pi/2;
[re_z,im_z] = meshgrid(re_z,im_z);
z = re_z + 1i*im_z;
f_of_z_result = polyval(p,z);
I appreciate any help

채택된 답변

Aisha Mohamed
Aisha Mohamed 2022년 9월 7일
Thanks Bruno
I know my a little information do not compare with expers like you and other experts in this group, but really I want to understad the worth information that you explane. Thank you so much. please allow me to ask more,
1- is this demi-line is the same for all second degree polynomail { y=0; x<=0, z=x+1i*y }?
2-please , what did you mean by your polynomial p(z) has two solutions of p(z)=x with x real and negative. ? I know second degree funtion has two root as a solution p(z)=0, but you mean p(z)=x with x real and negative. we have many values of z satisfay this condition not only two for example:
% -0.1320 - 0.0878i
% -0.1150 - 0.0756i
% -0.1067 - 0.0694i
2-if I have this polynomial (4th degree) p =[(0.6 - 0.7i) (-0.6000 + 0.0020i) (0.2449 + 0.0049i) (0.2000 + 0.0020i) (0.2 + 0.0010i) ] . is it has the same demi-line { y=0; x<=0, z=x+1i*y } and discontnue at four "places".
3 Becaufe of the discontinue at the negative values of x, can I avoied it by chosing this rang of z,
re_z = 0:0.01:pi/2;
im_z = 0:0.01:pi/2; and then I got this figure,
I appreciate any help.
  댓글 수: 10
Torsten 2022년 9월 11일
Because the phase(p(z)) at z=(0+0i) equales 2.1055 not +pi or -pi.
If you look at the plot of the "discontinuity front", you can see that z=0 is not therein. So angle(p(z)) is continuous at z = 0. Again: angle(p(z)), not angle(z).

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Bruno Luong
Bruno Luong 2022년 9월 6일
편집: Bruno Luong 님. 2022년 9월 6일
angle(z) is discontinue at the half line { y=0; x<=0, z=x+1i*y }.
The phase jumps from -pi for imaginary part y < 0 to +pi for y > 0. To make thing more complicated for y=0 in IEEE754 it can take the "IEEE-sign" of either +1 or -1, and the angle(z) returns +/-pi depending of the IEEE-sign of y (which is 0 mathematically).
In your case you have to determine when polyval(p,z)* is real and negative, which will implies angle discontinuity.
(*) you didn't tell us what is p.
  댓글 수: 20
Aisha Mohamed
Aisha Mohamed 2023년 4월 10일
Thanks, Torsten you are really genius.
I used only the values of z where f(z)=x and x<0 , it works out fine.

댓글을 달려면 로그인하십시오.


Help CenterFile Exchange에서 Special Functions에 대해 자세히 알아보기


Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by