Constrained regression with constrains on the slopes

조회 수: 1(최근 30일)
Prerna Mishra
Prerna Mishra 2022년 7월 26일
댓글: Alex Sha 2022년 7월 27일
I was the following regeression specification
ln Q = ln A + alpha * ln K + beta * ln L
I want to fins alpha and beta such that alpha + beta < 1 and alpha > 0 and beta > 0.
I am trying to use lsqlin but I don't understand how to write the specification.
  댓글 수: 5
Alex Sha
Alex Sha 2022년 7월 27일
Hi, Prerna Mishra, where are the data of Q?

댓글을 달려면 로그인하십시오.

답변(1개)

Matt J
Matt J 2022년 7월 26일
편집: Matt J 2022년 7월 26일
AA=log(K(:)./L(:));
bb=log(Q(:)./A(:)./L(:));
alpha=min( max(AA\bb,0) ,1 );
beta=1-alpha;
  댓글 수: 2
Matt J
Matt J 2022년 7월 27일
편집: Matt J 2022년 7월 27일
Darn it. Well then, why not with lsqlin as originally proposed,
C=[log(K(:)) log(L(:));
d=log(Q(:)./A(:));
x0=lsqlin(C,d,[1,1],1,[],[],[0 0],[1,1]);
alpha=x0(1);
beta=x0(2);
If desired, you can use x0 to initialize a a nonlinear least squares fit to the original non-logged model,
fun = @(x,KL) A(:).'*KL.^x;
lb = [0, 0];
ub = [1, 1];
x=lsqcurvefit(fun,x0(:)',[K(:),L(:)], Q(:), lb,ub);
alpha=x(1);
beta=x(2);

댓글을 달려면 로그인하십시오.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by