Fitting a modified gaussian

조회 수: 6 (최근 30일)
Sanchit Sharma
Sanchit Sharma 2022년 3월 18일
댓글: Mathieu NOE 2022년 3월 21일
Hello Experts,
I am new to data fitting. I would be very gratefull for a detailed response. I have a data set that looks like a streched gaussian distribution, or a reverse log normal distribution please see attached plot. Please let me know what distribution will be the best to get a good fit for this type of data. If you could please provide me with an example that would be very helpful. I have attached x and y data for your reference.
Thanks very much!
load x
load y
plot(x, y)

채택된 답변

Mathieu NOE
Mathieu NOE 2022년 3월 21일
hello
I am by no mean a curve fitting or stats expert but this is what I could achieve :
this is a reverse log normal distribution - so basically a gaussian fit realized not on x but on exp(x/constant)
f = @(a,b,c,d,x) a.*exp(-(exp(x/d)-b).^2 / c.^2);
plot
code
load('x.mat');
load('y.mat');
% curve fit using fminsearch
f = @(a,b,c,d,x) a.*exp(-(exp(x/d)-b).^2 / c.^2);
obj_fun = @(params) norm(f(params(1), params(2), params(3), params(4),x)-y);
d_init = 1000;
[a_init,ind] = max(y);
b_init = exp(x(ind)/d_init);
sol = fminsearch(obj_fun, [a_init,b_init,b_init/2,d_init]);
a_sol = sol(1)
b_sol = sol(2)
c_sol = sol(3)
d_sol = sol(4)
xx = linspace(min(x),max(x),200);
y_fit = f(a_sol, b_sol,c_sol,d_sol, xx);
yy = interp1(x,y, xx);
Rsquared = my_Rsquared_coeff(yy,y_fit); % correlation coefficient
plot(xx, y_fit, '-',x,y, 'r .', 'MarkerSize', 15)
title(['Gaussian Fit / R² = ' num2str(Rsquared) ], 'FontSize', 15)
ylabel('Amplitude', 'FontSize', 14)
xlabel('x', 'FontSize', 14)
eqn = " y = "+a_sol+ " * exp(-(exp(x / " +d_sol+" )- " +b_sol+")² / (" +c_sol+ ")²";
legend(eqn)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Rsquared = my_Rsquared_coeff(data,data_fit)
% R2 correlation coefficient computation
% The total sum of squares
sum_of_squares = sum((data-mean(data)).^2);
% The sum of squares of residuals, also called the residual sum of squares:
sum_of_squares_of_residuals = sum((data-data_fit).^2);
% definition of the coefficient of correlation is
Rsquared = 1 - sum_of_squares_of_residuals/sum_of_squares;
end
  댓글 수: 2
Sanchit Sharma
Sanchit Sharma 2022년 3월 21일
Thanks very much! This was very helpful. Could you please elaborate the meaning of line:
obj_fun = @(params) norm(f(params(1), params(2), params(3), params(4),x)-y);
Also, why did you assume c_init = b_init/2?
Best,
S
Mathieu NOE
Mathieu NOE 2022년 3월 21일
hello again
for the first question, I would simply recommend to see the fminsearch documentation. Simply follow how the function to minimize is defined (handle);
c_init = b_init/2 : a rough estimate based on how narrow or wide is the experimental peak. You can probably try other ratios , the optimizer will still converge to the optimal value
All the best !
M

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Probability Distributions에 대해 자세히 알아보기

태그

제품


릴리스

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by