필터 지우기
필터 지우기

Jiles–Atherton parameters

조회 수: 43 (최근 30일)
ANANTA BIJOY BHADRA
ANANTA BIJOY BHADRA 2022년 2월 2일
답변: Anshuman 2024년 1월 29일
How can I calculate Jiles-Atherton parameters. What will be the equations and how to write them in MATLAB code. can anyone give me code or suggestions?
  댓글 수: 1
Rik
Rik 2022년 2월 3일
I don't think this is a Matlab problem yet. Would you be able to explain with pen and paper how to do it? You need to explain the actual Matlab problem, otherwise you reduce the number of people who can help you to only those who understand this specific problem as well.
Have a read here and here. It will greatly improve your chances of getting an answer.

댓글을 달려면 로그인하십시오.

답변 (1개)

Anshuman
Anshuman 2024년 1월 29일
Hi Ananta, the core equations of the Jiles-Atherton model describe the relationship between the magnetization ( M ), the applied magnetic field ( H ), and the anhysteretic magnetization ( M_a ). The Jiles-Atherton model parameters are:
  • ( M_s ): Saturation magnetization
  • ( a ): Exchange coupling constant
  • ( k ): Anisotropy constant
  • ( c ): Magnetization reversal constant
  • ( alpha ): Parameter representing losses due to eddy currents and other effects
To calculate the Jiles-Atherton parameters, you typically perform a nonlinear curve fitting to experimental data. This can be done using MATLAB's optimization toolbox, specifically the "lsqcurvefit" function or similar. Here's a sample code of how you might set this up in MATLAB:
% Experimental data (H: applied magnetic field, M_exp: measured magnetization)
H = [...]; % Applied magnetic field vector
M_exp = [...]; % Measured magnetization vector
% Initial guesses for Jiles-Atherton parameters
params0 = [Ms0, a0, k0, c0, alpha0];
% Define the Jiles-Atherton model equation as a function
JA_model = @(params, H) ... % Implement the Jiles-Atherton equations here
% Set options for the fitting algorithm
options = optimoptions('lsqcurvefit', 'Display', 'iter', 'Algorithm', 'trust-region-reflective');
% Perform the curve fitting to find the best parameters
[params_fit, resnorm, residual, exitflag, output] = lsqcurvefit(JA_model, params0, H, M_exp, [], [], options);
% Extract the fitted parameters
Ms_fit = params_fit(1);
a_fit = params_fit(2);
k_fit = params_fit(3);
c_fit = params_fit(4);
alpha_fit = params_fit(5);
This is a general outline of how you can calculate Jiles-Atherton parameters using MATLAB.

카테고리

Help CenterFile Exchange에서 Magnetic Elements에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by