ํ•„ํ„ฐ ์ง€์šฐ๊ธฐ
ํ•„ํ„ฐ ์ง€์šฐ๊ธฐ

green's theorem

์กฐํšŒ ์ˆ˜: 76 (์ตœ๊ทผ 30์ผ)
Sanjana Chhabra
Sanjana Chhabra 2022๋…„ 1์›” 9์ผ
๋Œ“๊ธ€: Walter Roberson 2023๋…„ 7์›” 8์ผ
Verify Greenโ€™s theorem for the vector field๐น=(๐‘ฅ2โˆ’๐‘ฆ3)๐‘–+(๐‘ฅ3+๐‘ฆ2)๐‘—, over the ellipse ๐ถ:๐‘ฅ2+4๐‘ฆ2=64
  ๋Œ“๊ธ€ ์ˆ˜: 6
Gayathri
Gayathri 2023๋…„ 7์›” 8์ผ
integration [(xy+y^2)dx+(x^2)dy]
Walter Roberson
Walter Roberson 2023๋…„ 7์›” 8์ผ
@Gayathri I do not understand how that will help prove Green's theorem?
I am also unclear as to which variable the integration is with respect to?

๋Œ“๊ธ€์„ ๋‹ฌ๋ ค๋ฉด ๋กœ๊ทธ์ธํ•˜์‹ญ์‹œ์˜ค.

๋‹ต๋ณ€ (1๊ฐœ)

Mehul Mathur
Mehul Mathur 2022๋…„ 1์›” 11์ผ
clear
clc
syms x y t
F=input('Enter the vector function M(x,y)i+N(x,y)j in the form [M N]: ');
M(x,y)=F(1); N(x,y)=F(2);
r=input('Enter the parametric form of the curve C as [r1(t) r2(t)]: ');
r1=r(1);r2=r(2);
P=M(r1,r2);Q=N(r1,r2);
dr=diff(r,t);
F1=sum([P,Q].*dr);
T=input('Enter the limits of integration for t [t1,t2]: ');
t1=T(1);t2=T(2);
LHS=int(F1,t,t1,t2);
yL=input('Enter limits for y in terms of x: [y1,y2]: ');
xL=input('Enter limits for x as constants: [x1,x2]: ');
y1=yL(1);y2=yL(2);x1=xL(1);x2=xL(2);
F2=diff(N,x)-diff(M,y);
RHS=int(int(F2,y,y1,y2),x,x1,x2);
if(LHS==RHS)
disp('LHS of Greens theorem=')
disp(LHS)
disp('RHS of Greens theorem=')
disp(RHS)
disp('Hence Greens theorem is verified.');
end

์นดํ…Œ๊ณ ๋ฆฌ

Help Center ๋ฐ File Exchange์—์„œ Numbers and Precision์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด๊ธฐ

ํƒœ๊ทธ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by