How to train resnet50 model on multiple input?

조회 수: 7 (최근 30일)
john karli
john karli 2021년 12월 27일
댓글: john karli 2021년 12월 28일
I am following the belw link to make the multiple input network
but my dataset is different from the above link. I have time series data with shape (1,1024,2) in .mat file and data with 2 channel (224,224,2) .mat file. How do i make the image datastore as upperhalf and bottom half

답변 (1개)

yanqi liu
yanqi liu 2021년 12월 27일
yes,sir,may be use addLayers、connectLayers to merge net layers
  댓글 수: 1
john karli
john karli 2021년 12월 28일
I have tried but get the error my code is
trainpath1 = fullfile("D:\folder\");
trainpath2 = fullfile("E:\Classes\");
%imds1 = imageDatastore(trainpath1, 'IncludeSubfolders',true, 'FileExtensions','.PNG','LabelSource','foldernames');
imds1 = imageDatastore(trainpath1, 'FileExtensions', '.mat', 'IncludeSubfolders',true, ...
'LabelSource','foldernames',...
'ReadFcn',@matReader);
imds2 = signalDatastore(trainpath2,'SignalVariableNames',["frame","label"],'IncludeSubfolders',true,'FileExtensions','.mat');
%imds2 = imageDatastore(trainpath2, 'IncludeSubfolders',true, 'FileExtensions','.PNG','LabelSource','foldernames');
labelds = fileDatastore('labels.mat','ReadFcn',@myReadFcn,'ReadMode','partialfile');
cds = combine(imds1,imds2,labelds);
% Change the image sizes accordingly
imsize1 = [656 875 2];
imsize2 = [1 1024 2];
numClasses = 11;
%% Define muliple input network
layers1 = [
imageInputLayer(imsize1,'Name','input1')
convolution2dLayer(3,16,'Padding','same','Name','conv_1')
reluLayer('Name','relu_1')
fullyConnectedLayer(10,'Name','fc11')
additionLayer(2,'Name','add')
fullyConnectedLayer(numClasses,'Name','fc12')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
lgraph = layerGraph(layers1);
layers2 = [imageInputLayer(imsize2,'Name','input2')
convolution2dLayer(3,16,'Padding','same','Name','conv_2')
reluLayer('Name','relu_2')
fullyConnectedLayer(10,'Name','fc21')];
lgraph = addLayers(lgraph,layers2);
lgraph = connectLayers(lgraph,'fc21','add/in2');
plot(lgraph)
%% Define trainingOptions and also set 'Shuffle' to 'never' for this workaround to work
options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'LearnRateSchedule','piecewise',...
'MaxEpochs',3, ...
'MiniBatchSize',128, ...
'Verbose',1, ...
'Plots','training-progress');
net = trainNetwork(cds,lgraph,options);
error
Error using trainNetwork (line 184)
Dimensions of arrays being concatenated are not consistent.
Caused by:
Error using horzcat
Dimensions of arrays being concatenated are not consistent.

댓글을 달려면 로그인하십시오.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by