Correlation regression lines between two parameters

조회 수: 10 (최근 30일)
Amjad Iqbal
Amjad Iqbal 2021년 11월 8일
댓글: Adam Danz 2021년 11월 9일
Hello dear Researchers,
I have a query need your expertise to resolve.
I want to add correlation regression for two paramters for comparison purpose.
I have attached sub-plots which are scatter plots among two orientations.
Now purpose is to add correlation regression line i.e., one plot I added from a reference.

채택된 답변

yanqi liu
yanqi liu 2021년 11월 9일
편집: yanqi liu 2021년 11월 9일
sir, may be upload some data, use lsqcurvefit、polyfit and so on to compute the coef
please check the follow code to get some information
clc; clear all; close all;
xdata = linspace(0,3);
ydata = 1.3*xdata + 0.05*randn(size(xdata));
lb = [];
ub = [];
fun = @(x,xdata)x(1)*xdata+x(2);
x0 = [0,0];
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
x = 1×2
1.3048 -0.0023
plot(xdata,ydata,'ko',xdata,fun(x,xdata),'r-','LineWidth',2)
legend('Data','Fitted exponential')
title('Data and Fitted Curve')
  댓글 수: 10
Amjad Iqbal
Amjad Iqbal 2021년 11월 9일
I understand the fact linear fit. It seems in a good agreement by using both methods recommended by you and yanqi liu. Many many thanks once agian all, also @Image Analyst for your expertised suggestions. It really helps me. Final result is now up to the mark.
Adam Danz
Adam Danz 2021년 11월 9일
Yes, lsqcurvefit will provide the same results as polyfit or fitlm but the latter two are designed for linear models and do not require making initial guesses to the parameter values. I'm not trying to convince anyone to change their approach (or their selected answer). I'm arguing that lsqcurvefit is not the best tool for linear regression.
polyfit is much more efficient than lsqcurvefit (95x faster):
x = rand(1,100);
y = 4.8*x+2.1 +rand(1,100);
n = 5000;
tic
for i = 1:n
opts = struct('Display','off');
fun = @(x,xdata)x(1)*xdata+x(2);
p = lsqcurvefit(fun, [0,0],x,y,[],[],opts);
end
T1 = toc % time in seconds
T1 = 13.2634
p
p = 1×2
4.9170 2.4408
tic
for i = 1:n
p2 = polyfit(x,y,1);
end
T2 = toc % time in seconds
T2 = 0.1386
p2 % same results
p2 = 1×2
4.9170 2.4408
% Difference in time
T1/T2
ans = 95.7249

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Adam Danz
Adam Danz 2021년 11월 8일
편집: Adam Danz 2021년 11월 8일
Common methods of adding a simple linear regression line
1. Use lsline which will add a regression line for each set of data in the plot.
2. Use polyfit (degree 1) & refline to compute the regression coefficients and plot the line.
3. Use fitlm & refline to compute the regression coefficients and plot the line.
Examples of #1 & #2
Example of #3
If you want to compute correlation, see corr or corrcoeff.
  댓글 수: 2
Image Analyst
Image Analyst 2021년 11월 9일
Just to build on Adam's #3, this is how you'd do it:
% First get your model for fitted y values.
% Determine and say how well we did with our predictions, numerically, using several metrics like RMSE and MAE.
% Fit a linear model between predicted and true so we can get the R squared.
mdl = fitlm(actualy, fittedy)
rSquared = mdl.Rsquared.Ordinary;
rmse = mdl.RMSE;
mdlMSE = mdl.MSE;
residuals = abs(y - x);
% Find the mean and median absolute deviations of the elements in X.
meandev = mad(residuals,0,'all');
mediandev = mad(residuals,1,'all');
aveResidual = mean(residuals, 'omitnan');
maxResidual = max(residuals);
fprintf('The RMSE value is %.5f.\n', rmse);
fprintf('The R^2 value is %.5f.\n', rSquared);
fprintf('The MSE value is %.5f.\n', mdlMSE);
fprintf('The fitted y is different from the actual y by an average of %.2f units.\n', aveResidual);
fprintf('The fitted y is different from the actual y by an average of %.2f units.\n', meandev);
fprintf('The fitted y is different from the actual y by a median of %.2f units.\n', mediandev);
fprintf('The max residual from the average human grade is %.2f PSU.\n', maxResidual);
Amjad Iqbal
Amjad Iqbal 2021년 11월 9일
Thanks a lot dear Adam Danz and Image Analyst
That's seems a proper way to add several numerical comparisons. It helps a lot.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Get Started with Curve Fitting Toolbox에 대해 자세히 알아보기

제품


릴리스

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by