The way to solve a singular matrix
조회 수: 30 (최근 30일)
이전 댓글 표시
Hi
There is any one know how the method to decompose the singular square matrix using Matlab. Someone told me the Matlab have something like a ready Forthran subroutine. Does anyone know how to use it in Matlab?
댓글 수: 0
답변 (3개)
John D'Errico
2014년 8월 23일
편집: John D'Errico
2014년 8월 23일
help pinv
Not much more to say, since you give very little info to help you on. Note that computing the inverse of a matrix is almost never recommended. The backslash operator is a better choice always than inv. But pinv is a good tool for this purpose, when backslash (and surely also inv) will fail.
A = ones(2);
A\[1;1]
Warning: Matrix is singular to working precision.
ans =
NaN
NaN
inv(A)*[1;1]
Warning: Matrix is singular to working precision.
ans =
Inf
Inf
pinv(A)*[1;1]
ans =
0.5
0.5
댓글 수: 2
Einat Shoval
2017년 12월 24일
Thank you so much for this!! Was stuck on this for two days now until I found your answer :)
Jess
2016년 3월 22일
% Goal: solve A*x == b for x
% Set up some matrix A (I used a sparse matrix) -- do yourself
% Set up the vector b -- do yourself
% Perform SVD on A
[U,S,V] = svd(A);
% A == U*S*V' % Not needed, but you can check it yourself to confirm
% Calc number of singular values
s = diag(S); % vector of singular values
tolerance = max(size(A))*eps(max(s));
p = sum(s>tolerance);
% Define spaces
Up = U(:,1:p);
%U0 = U(:,p+1:Nx);
Vp = V(:,1:p);
%V0 = V(:,p+1:Nx);
%Sp = spdiags( s(1:p), 0, p, p );
SpInv = spdiags( 1.0./s(1:p), 0, p, p );
% Calc AInv such that x = AInv * b
AInv = Vp * SpInv * Up';
x = AInv * b; % DONE!
댓글 수: 1
Xin Shen
2019년 7월 10일
When I tried your idea to solve my problem, I got an error "SVD does not support sparse matrices. Use SVDS to compute a subset of the singular values and vectors of a sparse matrix". Does SVDS work for your idea?
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!