Problem with fmincon and many starting values

조회 수: 2 (최근 30일)
MRC
MRC 2014년 2월 13일
편집: Matt J 2014년 2월 13일
Hi all, I'm trying to code the following minimization problem using fmincon and many starting values but I get error messages because the objective function has the log function inside. How can I solve this problem? Here the code. Thank you!
n=2;
thetatrue=[1 1 2 2 0.2];
mu = [0 0];
sd = [1 thetatrue(2*n+1); thetatrue(2*n+1) 1];
load data
X=data(:,1:n);
Y=data(:,n+1:size(data,2));
A1(:,2)=-X(:,1);
A1(:,1)=-1;
A2(:,2)=-X(:,2);
A2(:,1)=-1;
W1=(all(bsxfun(@eq,Y,[0 0]),2));
W2=1-W1;
cdfun=@(x) mvncdf( [A1*[x(1);x(3)], A2*[x(2);x(4)] ]...
,mu,[1 x(5); x(5) 1]);
options=optimset('Algorithm','interior-...
point','Display','iter','MaxIter',10000,'TolX',10^-30,'TolFun',10^-30);
% Grid of starting values for fmincon
alpha1=normrnd(thetatrue(1),1,1,5); %random draws from N(alpha1true,1)
alpha2=normrnd(thetatrue(2),1,1,5); %random draws from N(alpha2true,1)
beta1=normrnd(thetatrue(3),1,1,5); %random draws from N(beta1true,1)
beta2=normrnd(thetatrue(4),1,1,5); %random draws from N(beta2true,1)
rho=(-0.9:0.1:0.9);
CC = {alpha1,alpha2,beta1,beta2,rho};
b = cellfun(@numel,CC);
n1 = cumsum(b);
a = fullfact(b);
idx = bsxfun(@plus,a,[0, n1(1:end-1)]);
v = cat(2,CC{:});
theta0grid = v(idx); %grid of starting values
L_nstar=zeros(size(theta0grid,1),1);
Exitflag=zeros(size(theta0grid,1),1);
for j=1:size(theta0grid,1) %for each starting value
theta0=theta0grid(j,:);
[theta,fval,exitflag,output]=...
fmincon(@(x) log_lik(x,cdfun,W1,W2),theta0,[],[],[],[],[-Inf; -Inf; Inf; -Inf;-0.999],[+Inf; +Inf; +Inf; +Inf; 0.999],[],options);
L_nstar(j)=-fval;
Exitflag(j)=exitflag;
end
L_nstar=max(L_nstar);
and
function val=log_lik(theta,cdfun,W1,W2)
z=cdfun(theta);
val=-sum(W1.*log(z)+W2.*log(1-z));
  댓글 수: 1
MRC
MRC 2014년 2월 13일
편집: MRC 2014년 2월 13일
for example when j=1, I get the following error
Error using barrier (line 22) Objective function is undefined at initial point. Fmincon cannot continue.
Error in fmincon (line 905) [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = barrier(funfcn,X,A,B,Aeq,Beq,l,u,confcn,options.HessFcn, ...

댓글을 달려면 로그인하십시오.

채택된 답변

Matt J
Matt J 2014년 2월 13일
편집: Matt J 2014년 2월 13일
The sqp algorithm can recover from NaN's and Infs returned by the objective function and constraints.
  댓글 수: 3
MRC
MRC 2014년 2월 13일
I have read that both interior-point and sqp can recover from Nan's and Inf's, so why is not the case here?
Matt J
Matt J 2014년 2월 13일
편집: Matt J 2014년 2월 13일
I think you need a starting point that is feasible, so that they have a foothold in the feasible set.
You should probably take a closer look at your initial values and at the values of mu and sigma to see why you're getting z=0 or 1. Since z=cdfun(theta) is from a Gaussian CDF, z should always assume values strictly between 0 and 1 where log(z) and log(1-z) should not be producing undefined values. Maybe you have overflow, in which case you're choosing highly extreme theta values, or you have sigma=0 somewhere...

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Solver Outputs and Iterative Display에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by