Solving an elliptic PDE with a point source
조회 수: 4 (최근 30일)
이전 댓글 표시
How do I solve the following PDE:
where c is a constant and delta is a point source? The domain is a rectangle and the boundary conditions are that u is zero on the boundary and the second derivative of u normal to the boundary is also zero. How do I cast this equation in terms of the generic MATLAB PDE,
which is solved by u = assempde(b,p,e,t,c,a,f)?
댓글 수: 3
Bruno Pop-Stefanov
2014년 1월 21일
I think you can follow a procedure similar to that example for the heat equation:
Give me a little more time to try it myself.
답변 (2개)
Youssef Khmou
2014년 1월 21일
편집: Youssef Khmou
2014년 1월 21일
Alex, You can find many tutorials on how to use the PDETOOL, however i recommend that you solve the equation by program , later you can verify your example, i tried to write the finite differences method for your equation, try to manipulate it a little a bit :
% PDE
clear;
N=200;
U=zeros(N);
Delta=1;
U(N/2,N/2)=Delta;
c=2;
T=400;
for t=1:T
for x=2:N-1
for y=2:N-1
if U(x,y)==Delta
continue;
else
E=(U(x+1,y)+U(x-1,y)+U(x,y+1)+U(x,y-1));
U(x,y)=((Delta/c)-E-((1/c)*U(x+1,y)))/(-(4+(1/c)));
end
end
end
end
figure, contour(U), shading interp
댓글 수: 2
Youssef Khmou
2014년 1월 22일
Alex , t is considered as the number of iterations necessary for convergence such |U(x,y)t+1|-||U(x,y)t||<tolerance, anyway we wait for an answer using pdetool .
Cordially .
Bill Greene
2014년 1월 22일
Hi,
As you've probably observed, PDE Toolbox doesn't support the du/dx term explicitly. However there is a trick you can try that often works.
First, I suggest you start with this example:
This example shows how to approximate the delta function and use adaptive meshing to refine the mesh around the load.
The trick to dealing with the du/dx term is to move it to the RHS and define the f-coefficient to be a function of ux (aka du/dx).
I made the following changes to the example I mention above:
I added these options to the call to adaptmesh:
'Nonlin', 'on', 'jac', 'full'
Then I made these changes to the circlef function:
Added:
[ux,uy] = pdegrad(p, t, u);
f = -ux;
and changed
if ~isnan(tn)
f(tn) = f(tn) + 1/ar(tn);
end
Bill
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Boundary Conditions에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!