margmean
Estimate marginal means
Description
Examples
Load the sample data.
load repeatedmeasThe table between includes the between-subject variables age, IQ, group, gender, and eight repeated measures y1 to y8 as responses. The table within includes the within-subject variables w1 and w2. This is simulated data.
Fit a repeated measures model, where the repeated measures y1 to y8 are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.
rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);
Compute the marginal means grouped by the factors Group and Gender.
M = margmean(rm,{'Group' 'Gender'})M=6×6 table
Group Gender Mean StdErr Lower Upper
_____ ______ _______ ______ ________ _______
A Female 15.946 5.6153 4.3009 27.592
A Male 8.0726 5.7236 -3.7973 19.943
B Female 11.758 5.7091 -0.08189 23.598
B Male 2.2858 5.6748 -9.483 14.055
C Female -8.6183 5.871 -20.794 3.5574
C Male -13.551 5.7283 -25.431 -1.6712
Display the description for table M.
M.Properties.Description
ans =
'Estimated marginal means
Means computed with Age=13.7, IQ=98.2667'
Load the sample data.
load fisheririsThe column vector, species, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.
Store the data in a table array.
t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),... VariableNames=["species","meas1","meas2","meas3","meas4"]); Meas = [1 2 3 4]';
Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.
rm = fitrm(t,"meas1-meas4~species",WithinDesign=Meas);Compute the marginal means grouped by the factor species.
margmean(rm,"species")ans=3×5 table
species Mean StdErr Lower Upper
______________ ______ ________ ______ ______
{'setosa' } 2.5355 0.042807 2.4509 2.6201
{'versicolor'} 3.573 0.042807 3.4884 3.6576
{'virginica' } 4.285 0.042807 4.2004 4.3696
StdError field shows the standard errors of the estimated marginal means. The Lower and Upper fields show the lower and upper bounds for the 95% confidence intervals of the group marginal means, respectively. None of the confidence intervals overlap, which indicates that marginal means differ with species. You can also plot the estimated marginal means using the plotprofile method.
Compute the 99% confidence intervals for the marginal means.
margmean(rm,"species",alpha=0.01)ans=3×5 table
species Mean StdErr Lower Upper
______________ ______ ________ ______ ______
{'setosa' } 2.5355 0.042807 2.4238 2.6472
{'versicolor'} 3.573 0.042807 3.4613 3.6847
{'virginica' } 4.285 0.042807 4.1733 4.3967
Input Arguments
Repeated measures model, returned as a RepeatedMeasuresModel object.
For properties and methods of this object, see RepeatedMeasuresModel.
Variables for which to compute the marginal means, specified as a character vector or string
scalar representing the name of a between or within-subjects factor in
rm, or a string array or cell array of character
vectors representing the names of multiple variables. Each between-subjects
factor must be categorical.
For example, if you want to compute the marginal means for the variables Drug and Gender, then you can specify as follows.
Example: {'Drug','Gender'}
Data Types: char | string | cell
Significance level of the confidence intervals for population marginal
means, specified as a scalar value in the range of 0 to 1. The confidence
level is 100*(1–alpha)%.
For example, you can specify a 99% confidence level as follows.
Example: 'alpha',0.01
Data Types: double | single
Output Arguments
Estimated marginal means, returned as a table. tbl contains
one row for each combination of the groups of the variables you specify
in vars, one column for each variable, and the
following columns.
| Column name | Description |
|---|---|
Mean | Estimated marginal means |
StdErr | Standard errors of the estimates |
Lower | Lower limit of a 95% confidence interval for the true population mean |
Upper | Upper limit of a 95% confidence interval for the true population mean |
Version History
Introduced in R2014a
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)