Multivariate linear regression
returns
the estimated coefficients for a multivariate normal regression of
the d-dimensional responses in beta
= mvregress(X
,Y
)Y
on
the design matrices in X
.
returns
the estimated coefficients using additional options specified by one
or more name-value pair arguments. For example, you can specify the
estimation algorithm, initial estimate values, or maximum number of
iterations for the regression.beta
= mvregress(X
,Y
,Name,Value
)
[1] Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 2002.
[2] Meng, Xiao-Li, and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.
[3] Sexton, Joe, and A. R. Swensen. “ECM Algorithms that Converge at the Rate of EM.” Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.
[4] Dempster, A. P., N. M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp. 1–37.