CompactTreeBagger
Compact ensemble of bagged decision trees
Description
CompactTreeBagger is a compact version of the TreeBagger ensemble. The compact ensemble does not contain the following:
            information about how the TreeBagger function grows the decision
            trees; the input data used for growing trees; or the training parameters (for example,
            minimal leaf size, number of variables sampled for each decision split at random, and so
            on). Use CompactTreeBagger for tasks such as predicting the response or
            class labels.
Creation
Create a CompactTreeBagger ensemble object from a full, trained
                TreeBagger ensemble by using compact.
Properties
Object Functions
| combine | Combine two ensembles | 
| error | Error (misclassification probability or MSE) | 
| margin | Classification margin | 
| mdsprox | Multidimensional scaling of proximity matrix | 
| meanMargin | Mean classification margin | 
| outlierMeasure | Outlier measure for data in ensemble of decision trees | 
| partialDependence | Compute partial dependence | 
| plotPartialDependence | Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots | 
| predict | Predict responses using ensemble of bagged decision trees | 
| proximity | Proximity matrix for data in ensemble of decision trees | 
| setDefaultYfit | Set default value for predict | 
Examples
Tips
- For a - CompactTreeBaggermodel- CMdl, the- Treesproperty contains a cell vector of- CMdl.NumTrees- CompactClassificationTreeor- CompactRegressionTreeobjects. View the graphical display of the- tgrown tree by entering:- view(CMdl.Trees{t})
Version History
Introduced in R2009a
