CompactTreeBagger
Compact ensemble of bagged decision trees
Description
CompactTreeBagger
is a compact version of the TreeBagger
ensemble. The compact ensemble does not contain the following:
information about how the TreeBagger
function grows the decision
trees; the input data used for growing trees; or the training parameters (for example,
minimal leaf size, number of variables sampled for each decision split at random, and so
on). Use CompactTreeBagger
for tasks such as predicting the response or
class labels.
Creation
Create a CompactTreeBagger
ensemble object from a full, trained
TreeBagger
ensemble by using compact
.
Properties
Object Functions
combine | Combine two ensembles |
error | Error (misclassification probability or MSE) |
margin | Classification margin |
mdsprox | Multidimensional scaling of proximity matrix |
meanMargin | Mean classification margin |
outlierMeasure | Outlier measure for data in ensemble of decision trees |
partialDependence | Compute partial dependence |
plotPartialDependence | Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots |
predict | Predict responses using ensemble of bagged decision trees |
proximity | Proximity matrix for data in ensemble of decision trees |
setDefaultYfit | Set default value for predict |
Examples
Tips
For a
CompactTreeBagger
modelCMdl
, theTrees
property contains a cell vector ofCMdl.NumTrees
CompactClassificationTree
orCompactRegressionTree
objects. View the graphical display of thet
grown tree by entering:view(CMdl.Trees{t})
Version History
Introduced in R2009a