predictObjective
Predict objective function at a set of points
Syntax
Description
Examples
Predict Cross-Validation Loss of an Optimized Classifier
This example shows how to estimate the cross-validation loss of an optimized classifier.
Optimize a KNN classifier for the ionosphere
data, meaning find parameters that minimize the cross-validation loss. Minimize over nearest-neighborhood sizes from 1 to 30, and over the distance functions 'chebychev'
, 'euclidean'
, and 'minkowski'
.
For reproducibility, set the random seed, and set the AcquisitionFunctionName
option to 'expected-improvement-plus'
.
load ionosphere rng default num = optimizableVariable('n',[1,30],'Type','integer'); dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical'); c = cvpartition(351,'Kfold',5); fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,... 'Distance',char(x.dst),'NSMethod','exhaustive')); results = bayesopt(fun,[num,dst],'Verbose',0,... 'AcquisitionFunctionName','expected-improvement-plus');
Create a table of points to estimate.
b = categorical({'chebychev','euclidean','minkowski'}); n = [1;1;1;4;2;2]; dst = [b(1);b(2);b(3);b(1);b(1);b(3)]; XTable = table(n,dst);
Estimate the objective and standard deviation of the objective at these points.
[objective,sigma] = predictObjective(results,XTable); [XTable,table(objective,sigma)]
ans=6×4 table
n dst objective sigma
_ _________ _________ _________
1 chebychev 0.12132 0.0068029
1 euclidean 0.14052 0.0079128
1 minkowski 0.14057 0.0079117
4 chebychev 0.1227 0.0068805
2 chebychev 0.12176 0.0066739
2 minkowski 0.1437 0.0075448
Input Arguments
results
— Bayesian optimization results
BayesianOptimization
object
Bayesian optimization results, specified as a BayesianOptimization
object.
XTable
— Prediction points
table with D columns
Prediction points, specified as a table with D columns, where D is the number of variables in the problem. The function performs its predictions on these points.
Data Types: table
Output Arguments
objective
— Objective estimates
N
-by-1
vector
Objective estimates, returned as an
N
-by-1
vector, where
N
is the number of rows of
XTable
. The estimates are the mean values of the
posterior distribution of the Gaussian process model of the objective
function.
sigma
— Standard deviations of objective function
N
-by-1
vector
Standard deviations of objective function, returned as an
N
-by-1
vector, where
N
is the number of rows of
XTable
. The standard deviations are those of the
posterior distribution of the Gaussian process model of the objective
function.
Version History
Introduced in R2016b
See Also
MATLAB 명령
다음 MATLAB 명령에 해당하는 링크를 클릭했습니다.
명령을 실행하려면 MATLAB 명령 창에 입력하십시오. 웹 브라우저는 MATLAB 명령을 지원하지 않습니다.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)