sbionlinfit
Perform nonlinear least-squares regression using SimBiology models (requires Statistics and Machine Learning Toolbox software)
sbionlinfit
will be removed in a future release. Use sbiofit
instead.
Syntax
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
)
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, Name,Value
)
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, optionStruct
)
[results
, SimDataI
]
= sbionlinfit(...)
Description
performs least-squares regression using the SimBiology® model, results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
)modelObj
, and returns estimated results
in the results
structure.
performs least-squares regression, with additional options specified by one or more
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, Name,Value
)Name,Value
pair arguments.
Following is an alternative to the previous syntax:
specifies results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, optionStruct
)optionStruct
, a structure containing fields and
values used by the options
input structure to the nlinfit
(Statistics and Machine Learning Toolbox) function.
[
returns simulations of the SimBiology model, results
, SimDataI
]
= sbionlinfit(...)
, using the
estimated values of the parameters.modelObj
Input Arguments
| SimBiology model object used to fit observed data. |
|
Note If using a |
|
Note For each subset of data belonging to a single group (as defined in the
data column specified by the
|
| Vector of initial parameter estimates for each parameter estimated in
|
| Structure containing fields and values used by the
If you have Parallel Computing Toolbox™, you can enable parallel computing for faster data fitting by
setting the name-value pair argument parpool; % Open a parpool for parallel computing opt = statset(...,'UseParallel',true); % Enable parallel computing results = sbionlinfit(...,opt); % Perform data fitting |
Name-Value Arguments
Output Arguments
| 1-by-N array of objects, where N is
the number of groups in
|
|
|
Version History
Introduced in R2009a
See Also
PKData object
| PKModelDesign object
| PKModelMap object
| Model object
| sbionlmefit
| nlinfit
(Statistics and Machine Learning Toolbox) | sbionlmefitsa