createSimFunction
Create SimFunction
object
Syntax
Description
creates a F
= createSimFunction(model
,params
,observables
,dosed
)SimFunction object
F
that you can execute like a function handle. The
params
and observables
arguments define the
inputs and outputs of the function F
when it is executed, and
dosed
defines the dosing information of species. See SimFunction object
for details on how to execute
F
.
Note
Active doses and variants of the model are ignored when
F
is executed.F
is immutable after it is created.F
is automatically accelerated at the first function execution unless you set AutoAccelerate tofalse
. Manually accelerate the object if you want it accelerated in your deployment applications.
uses additional options specified by one or more F
= createSimFunction(___,Name,Value
)Name,Value
pair
arguments.
Examples
Create a SimFunction Object
This example uses a radioactive decay model with the first-order reaction , where x
and z
are species and c
is the forward rate constant.
Load the sample project containing the radioactive decay model m1
.
sbioloadproject radiodecay;
Create a SimFunction
, specifying the parameter Reaction1.c
to be scanned, and species x
as the output of the function with no dosed species.
f = createSimFunction(m1, 'Reaction1.c','x', [])
f = SimFunction Parameters: Name Value Type Units _______________ _____ _____________ ____________ {'Reaction1.c'} 0.5 {'parameter'} {'1/second'} Observables: Name Type Units _____ ___________ ____________ {'x'} {'species'} {'molecule'} Dosed: None TimeUnits: second
If the UnitConversion
option was set to false
when the SimFunction
object f
was created, the table does not display the units of the model quantities.
To illustrate this, first set the UnitConversion
option to false
.
cs = getconfigset(m1); cs.CompileOptions.UnitConversion = false;
Create the SimFunction
object as before and note that the variable named Units
disappears.
f = createSimFunction(m1, {'Reaction1.c'},{'x'}, [])
f = SimFunction Parameters: Name Value Type _______________ _____ _____________ {'Reaction1.c'} 0.5 {'parameter'} Observables: Name Type _____ ___________ {'x'} {'species'} Dosed: None
If any of the species in the model is being dosed, specify the names of dosed species as the last argument. For example, if the species x
is being dosed, specify it as the last argument.
f = createSimFunction(m1, {'Reaction1.c'},{'x'}, 'x')
f = SimFunction Parameters: Name Value Type _______________ _____ _____________ {'Reaction1.c'} 0.5 {'parameter'} Observables: Name Type _____ ___________ {'x'} {'species'} Dosed: TargetName __________ {'x'}
Once the SimFunction
object is created, you can execute it like a function handle and perform parameter scans (in parallel if Parallel Computing Toolbox™ is available), Monte Carlo simulations, and scans with multiple or vectorized doses. See SimFunction
for more examples.
Create a SimFunction Object with Dosing Information
This example creates a SimFunction object with dosing information using a RepeatDose or ScheduleDose object or a vector of these objects. However, if any dose object contains data such as StartTime, Amount, and Rate, such data are ignored, and a warning is issued. Only data, if available, used are TargetName, LagParameterName, and DurationParameterName of the dose object.
Load the sample project containing the radioactive decay model m1.
sbioloadproject radiodecay;
Create a RepeatDose object and specify its properties.
rdose = sbiodose('rd'); rdose.TargetName = 'x'; rdose.StartTime = 5; rdose.TimeUnits = 'second'; rdose.Amount = 300; rdose.AmountUnits = 'molecule'; rdose.Rate = 1; rdose.RateUnits = 'molecule/second'; rdose.Interval = 100; rdose.RepeatCount = 2;
Add a lag parameter and duration parameter to the model.
lagPara = addparameter(m1,'lp'); lagPara.Value = 1; lagPara.ValueUnits = 'second'; duraPara = addparameter(m1,'dp'); duraPara.Value = 1; duraPara.ValueUnits = 'second';
Set these parameters to the dose object.
rdose.LagParameterName = 'lp'; rdose.DurationParameterName = 'dp';
Create a SimFunction object f using the RepeatDose object rdose that you just created. Turn off the information warning that is issued during simulation because the rdose object contains data (StartTime, Amount, Rate) that are ignored by the createSimFunction method.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY'); f = createSimFunction(m1,{'Reaction1.c'},{'x','z'},rdose)
f = SimFunction Parameters: Name Value Type Units _______________ _____ _____________ ____________ {'Reaction1.c'} 0.5 {'parameter'} {'1/second'} Observables: Name Type Units _____ ___________ ____________ {'x'} {'species'} {'molecule'} {'z'} {'species'} {'molecule'} Dosed: TargetName TargetDimension DurationParameterName DurationParameterValue DurationParameterUnits LagParameterName LagParameterValue LagParameterUnits __________ ___________________________________ _____________________ ______________________ ______________________ ________________ _________________ _________________ {'x'} {'Amount (e.g., mole or molecule)'} {'dp'} 1 {'second'} {'lp'} 1 {'second'} TimeUnits: second
Turn the warning back on.
warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');
Scan Parameters of the Lotka-Volterra Model
This example shows how to execute different signatures of the SimFunction
to simulate and scan parameters of the Lotka-Volterra (predator-prey) model described by Gillespie [1].
Load the sample project containing the model m1
.
sbioloadproject lotka;
Create a SimFunction object f
with c1
and c2
as input parameters to be scanned, and y1
and y2
as the output of the function with no dosed species.
f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])
f = SimFunction Parameters: Name Value Type ________________ _____ _____________ {'Reaction1.c1'} 10 {'parameter'} {'Reaction2.c2'} 0.01 {'parameter'} Observables: Name Type ______ ___________ {'y1'} {'species'} {'y2'} {'species'} Dosed: None
Define an input matrix that contains values for each parameter (c1
and c2
) for each simulation. The number of rows indicates the total number of simulations, and each simulation uses the parameter values specified in each row.
phi = [10 0.01; 10 0.02];
Run simulations until the stop time is 5 and plot the simulation results.
sbioplot(f(phi, 5));
You can also specify a vector of different stop times for each simulation.
t_stop = [3;6]; sbioplot(f(phi, t_stop));
Next, specify the output times as a vector.
t_output = 0:0.1:5; sbioplot(f(phi,[],[],t_output));
Specify output times as a cell array of vectors.
t_output = {0:0.01:3, 0:0.2:6}; sbioplot(f(phi, [], [], t_output));
Calculate Local Sensitivities Using SimFunctionSensitivity
Object
This example shows how to calculate the local sensitivities of some species in the Lotka-Volterra model using the SimFunctionSensitivity
object.
Load the sample project.
sbioloadproject lotka;
Define the input parameters.
params = {'Reaction1.c1', 'Reaction2.c2'};
Define the observed species, which are the outputs of simulation.
observables = {'y1', 'y2'};
Create a SimFunctionSensitivity
object. Set the sensitivity output factors to all species (y1
and y2
) specified in the observables
argument and input factors to those in the params
argument (c1
and c2
) by setting the name-value pair argument to 'all'
.
f = createSimFunction(m1,params,observables,[],'SensitivityOutputs','all','SensitivityInputs','all','SensitivityNormalization','Full')
f = SimFunction Parameters: Name Value Type ________________ _____ _____________ {'Reaction1.c1'} 10 {'parameter'} {'Reaction2.c2'} 0.01 {'parameter'} Observables: Name Type ______ ___________ {'y1'} {'species'} {'y2'} {'species'} Dosed: None Sensitivity Input Factors: Name Type ________________ _____________ {'Reaction1.c1'} {'parameter'} {'Reaction2.c2'} {'parameter'} Sensitivity Output Factors: Name Type ______ ___________ {'y1'} {'species'} {'y2'} {'species'} Sensitivity Normalization: Full
Calculate sensitivities by executing the object with c1
and c2
set to 10 and 0.1, respectively. Set the output times from 1 to 10. t
contains time points, y
contains simulation data, and sensMatrix
is the sensitivity matrix containing sensitivities of y1
and y2
with respect to c1
and c2
.
[t,y,sensMatrix] = f([10,0.1],[],[],1:10);
Retrieve the sensitivity information at time point 5.
temp = sensMatrix{:}; sensMatrix2 = temp(t{:}==5,:,:); sensMatrix2 = squeeze(sensMatrix2)
sensMatrix2 = 2×2
37.6987 -6.8447
-40.2791 5.8225
The rows of sensMatrix2
represent the output factors (y1
and y2
). The columns represent the input factors (c1
and c2
).
Set the stop time to 15, without specifying the output times. In this case, the output times are the solver time points by default.
sd = f([10,0.1],15);
Retrieve the calculated sensitivities from the SimData
object sd
.
[t,y,outputs,inputs] = getsensmatrix(sd);
Plot the sensitivities of species y1
and y2
with respect to c1
.
figure; plot(t,y(:,:,1)); legend(outputs); title('Sensitivities of species y1 and y2 with respect to parameter c1'); xlabel('Time'); ylabel('Sensitivity');
Plot the sensitivities of species y1
and y2
with respect to c2
.
figure; plot(t,y(:,:,2)); legend(outputs); title('Sensitivities of species y1 and y2 with respect to parameter c2'); xlabel('Time'); ylabel('Sensitivity');
Alternatively, you can use sbioplot
.
sbioplot(sd);
You can also plot the sensitivity matrix using the time integral for the calculated sensitivities of y1
and y2
. The plot indicates y1
and y2
are more sensitive to c1
than c2
.
[~, in, out] = size(y); result = zeros(in, out); for i = 1:in for j = 1:out result(i,j) = trapz(t(:),abs(y(:,i,j))); end end figure; hbar = bar(result); haxes = hbar(1).Parent; haxes.XTick = 1:length(outputs); haxes.XTickLabel = outputs; legend(inputs,'Location','NorthEastOutside'); ylabel('Sensitivity');
Simulate Model of Glucose-Insulin Response with Different Initial Conditions
This example shows how to simulate the glucose-insulin responses for the normal and diabetic subjects.
Load the model of glucose-insulin response. For details about the model, see the Background section in Simulate the Glucose-Insulin Response.
sbioloadproject('insulindemo', 'm1')
The model contains different initial conditions stored in various variants.
variants = getvariant(m1);
Get the initial conditions for the type 2 diabetic patient.
type2 = variants(1)
type2 = SimBiology Variant - Type 2 diabetic (inactive) ContentIndex: Type: Name: Property: Value: 1 parameter Plasma Volume ... Value 1.49 2 parameter k1 Value .042 3 parameter k2 Value .071 4 parameter Plasma Volume ... Value .04 5 parameter m1 Value .379 6 parameter m2 Value .673 7 parameter m4 Value .269 8 parameter m5 Value .0526 9 parameter m6 Value .8118 10 parameter Hepatic Extrac... Value .6 11 parameter kmax Value .0465 12 parameter kmin Value .0076 13 parameter kabs Value .023 14 parameter kgri Value .0465 15 parameter f Value .9 16 parameter a Value 6e-05 17 parameter b Value .68 18 parameter c Value .00023 19 parameter d Value .09 20 parameter kp1 Value 3.09 21 parameter kp2 Value .0007 22 parameter kp3 Value .005 23 parameter kp4 Value .0786 24 parameter ki Value .0066 25 parameter [Ins Ind Glu U... Value 1.0 26 parameter Vm0 Value 4.65 27 parameter Vmx Value .034 28 parameter Km Value 466.21 29 parameter p2U Value .084 30 parameter K Value .99 31 parameter alpha Value .013 32 parameter beta Value .05 33 parameter gamma Value .5 34 parameter ke1 Value .0007 35 parameter ke2 Value 269.0 36 parameter Basal Plasma G... Value 164.18 37 parameter Basal Plasma I... Value 54.81
Suppress an informational warning that is issued during simulations.
warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');
Create SimFunction objects to simulate the glucose-insulin response for the normal and diabetic subjects.
Specify an empty array
{}
for the second input argument to denote that the model will be simulated using the base parameter values (that is, no parameter scanning will be performed).Specify the plasma glucose and insulin concentrations as responses (outputs of the function to be plotted).
Specify the species
Dose
as the dosed species. This species represents the initial concentration of glucose at the start of the simulation.
normSim = createSimFunction(m1,{},... {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose')
normSim = SimFunction Parameters: Name Value Type Units ____ _____ ____ _____ Observables: Name Type Units _____________________ ___________ _______________________ {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'} {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' } Dosed: TargetName TargetDimension __________ _____________________ {'Dose'} {'Mass (e.g., gram)'} TimeUnits: hour
For the diabetic patient, specify the initial conditions using the variant type2
.
diabSim = createSimFunction(m1,{},... {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose',type2)
diabSim = SimFunction Parameters: Name Value Type Units ____ _____ ____ _____ Observables: Name Type Units _____________________ ___________ _______________________ {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'} {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' } Dosed: TargetName TargetDimension __________ _____________________ {'Dose'} {'Mass (e.g., gram)'} TimeUnits: hour
Select a dose that represents a single meal of 78 grams of glucose at the start of the simulation.
singleMeal = sbioselect(m1,'Name','Single Meal');
Convert the dosing information to the table format.
mealTable = getTable(singleMeal);
Simulate the glucose-insulin response for a normal subject for 24 hours.
sbioplot(normSim([],24,mealTable));
Simulate the glucose-insulin response for a diabetic subject for 24 hours.
sbioplot(diabSim([],24,mealTable));
Perform a Scan Using Variants
Suppose you want to perform a parameter scan using an array of variants that contain different initial conditions for different insulin impairments. For example, the model m1
has variants that correspond to the low insulin sensitivity and high insulin sensitivity. You can simulate the model for both conditions via a single call to the SimFunction object.
Select the variants to scan.
varToScan = sbioselect(m1,'Name',... {'Low insulin sensitivity','High insulin sensitivity'});
Check which model parameters are being stored in each variant.
varToScan(1)
ans = SimBiology Variant - Low insulin sensitivity (inactive) ContentIndex: Type: Name: Property: Value: 1 parameter Vmx Value .0235 2 parameter kp3 Value .0045
varToScan(2)
ans = SimBiology Variant - High insulin sensitivity (inactive) ContentIndex: Type: Name: Property: Value: 1 parameter Vmx Value .094 2 parameter kp3 Value .018
Both variants store alternate values for Vmx
and kp3
parameters. You need to specify them as input parameters when you create a SimFunction object.
Create a SimFunction object to scan the variants.
variantScan = createSimFunction(m1,{'Vmx','kp3'},... {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose');
Simulate the model and plot the results. Run 1
include simulation results for the low insulin sensitivity and Run 2
for the high insulin sensitivity.
sbioplot(variantScan(varToScan,24,mealTable));
Low insulin sensitivity lead to increased and prolonged plasma glucose concentration.
Restore warning settings.
warning(warnSettings);
Input Arguments
model
— SimBiology model
SimBiology.Model
object
SimBiology model, specified as a SimBiology model object
.
The function uses the same configset
settings by
making a copy of the Configset
object of the
model
object. However, the function ignores the following
configset
settings: StatesToLog
, OutputTimes, StopTime, and SensitivityAnalysisOptions because these
settings are provided by other inputs to the function.
params
— Inputs of SimFunction F
character vector | string scalar | string vector | cell array of character vectors | {}
| SimBiology.Scenarios
object
Inputs of SimFunction F
, specified as a character vector,
string scalar, string vector, cell array of character vectors, empty cell array
{}
, or SimBiology.Scenarios
object. The character vectors represent the names of
model quantities (species, compartments, or parameters) that define the inputs of
F
. Use an empty cell array {}
or empty
Scenarios
object SimBiology.Scenarios.empty()
to
create a SimFunction object
that has no
parameters.
To unambiguously name a model quantity, use the qualified name, which includes the
name of the compartment. To name a reaction-scoped parameter, use the reaction name to
qualify the parameter. If the name is not a valid MATLAB® variable name, surround it by square brackets such as [reaction
1].[parameter 1]
.
observables
— Outputs of SimFunction F
character vector | string scalar | string vector | cell array of character vectors
Outputs of SimFunction F
, specified as a character vector,
string scalar, string vector, or cell array of character vectors. The character vectors
represent the names of model quantities (species, compartments, or parameters) or
observable
objects that define the outputs of F
.
dosed
— Dosed species or dose objects
character vector | string scalar | string vector | cell array of character vectors | vector of dose objects | []
Dosed species or dose objects, specified as a character vector, string scalar,
string vector, cell array of character vectors, vector of dose objects, or empty array
[]
.
If it is []
, no species are dosed during simulation unless you
specify a Scenarios
object that has doses defined in its
entries.
If it is a cell array of character vectors, it must be 1-by-N
array, where N is the number of dosed species names. You can use
duplicate species names if you plan to use multiple doses for the same species when you run the SimFunction
F
. Using only dosed species names contains no information on the
dose properties. If you have a dose object that contains parameterized
properties such as Amount
, use the dose object as input instead of
just species names to transfer such parameter information to the created SimFunction
F
.
If it is a vector of dose objects, it must be 1-by-N vector,
where N is the number of dose objects. If dose objects have
properties with nondefault numeric values, these values are ignored and a warning is
issued. Only TargetName
, DurationParameterName
,
LagParameterName
, and parameterized
properties are used to create the SimFunction object F
, that is, to
define the Dosed
property of F
. For details on
how the Dosed
property table is populated, see Dosed.
The dosing information that you specify during the creation of the
SimFunction
object must be consistent with the dosing information you
specify during the execution of the object. In other words, the number of elements in
the Dosed
property of SimFunction
F
must equal to the combined number of doses in the input
Scenarios
object in phi
and doses in the input argument u
when you execute the object.
variants
— Alternate model values
variant object | vector of variant objects
Alternate model values, specified as a variant or vector of variant objects. These
values are applied as the model baseline values when the SimFunction
object is created. If there are multiple variants referring to the same model element,
the last occurrence is used.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: F =
createSimFunction(model,params,observables,dosed,UseParallel=true)
specifies to
execute the SimFunction F
in parallel.
UseParallel
— Flag to execute SimFunction F
in parallel
false
(default) | true
Flag to execute SimFunction F
in parallel, specified as
true
or false
. If true
and
Parallel Computing Toolbox™ is available, the SimFunction F
is executed in
parallel.
AutoAccelerate
— Flag to accelerate model on first evaluation of SimFunction
true
(default) | false
Flag to accelerate the model on the first evaluation of the
SimFunction
object, specified as true
or
false
.
Set the value to false
if you have a model that is fast to
simulate because the acceleration of the model could take longer than the actual
simulation of the model.
SensitivityOutputs
— Sensitivity output factors
{}
(default) | cell array of character vectors | 'all'
Sensitivity output factors, specified as a cell array of character vectors. The
character vectors are the names of model quantities (species and parameters) for which
you want to compute the sensitivities. The default is {}
meaning
there is no output factors. Output factors are the numerators of time-dependent
derivatives explained in Sensitivity Analysis in SimBiology.
Use the keyword 'all'
or "all"
to specify
all model quantities as sensitivity outputs. However, {'all'}
means
a model quantity named all
in the model.
["all","x"]
sets the sensitivity input factors or output factors
to the species named all
and x
.
You must specify both SensitivityOutputs
and
SensitivityInputs
name-value arguments for sensitivity
calculations.
Example: SensitivityOutputs='all'
SensitivityInputs
— Sensitivity input factors
{}
(default) | cell array of character vectors | 'all'
Sensitivity input factors, specified as a cell array of character vectors. The
character vectors are the names of model quantities (species, compartments, and
parameters) with respect to which you want to compute the sensitivities. The default
is {}
meaning no input factors. Input factors are the denominators
of time-dependent derivatives explained in Sensitivity Analysis in SimBiology.
Use the keyword 'all'
or "all"
to specify
all model quantities as sensitivity outputs. However, {'all'}
means
a model quantity named all
in the model.
["all","x"]
sets the sensitivity inputs or outputs to the species
named all
and x
.
You must specify both SensitivityOutputs
and
SensitivityInputs
name-value arguments for sensitivity
calculations.
Example: SensitivityInputs={'Reaction1.c1','Reaction1.c2'}
,
SensitivityNormalization
— Normalization for calculated sensitivities
'None'
(default) | 'Half
| 'Full'
Normalization for calculated sensitivities, specified as one of the following:
'None'
, 'Half'
, or
'Full'
.
'None'
— No normalization (default)'Half'
— Normalization relative to the numerator only'Full'
— Full dedimensionalization
For details, see Normalization.
Example: SensitivityNormalization='Full'
Output Arguments
F
— SimFunction
SimFunction
object | SimFunctionSensitivity
object
SimFunction, returned as a SimFunction object
or SimFunctionSensitivity object
.
F
is a SimFunctionSensitivity object
if you specify non-empty
'SensitivityOutputs'
and 'SensitivityInputs'
name-value pair arguments.
References
[1] Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry. 81(25), 2340–2361.
Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
To run in parallel, set 'UseParallel'
to true
.
For more information, see the 'UseParallel'
name-value pair argument.
Version History
Introduced in R2014a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)