anfisOptions
Option set for anfis function
Description
Use an anfisOptions object to specify options for tuning fuzzy
      systems using the anfis function. You can specify options such as the
      initial FIS structure to tune and number of training epochs.
Creation
Description
opt = anfisOptionsanfis. To modify
          options, use dot notation.
opt = anfisOptions(PropertyName=Value)opt =
            anfisOptions(EpochNumber=50) sets the number of training epochs to 50.
Properties
Initial FIS structure to tune, specified as one of the following values.
- Positive integer greater than - 1specifying the number of membership functions for all input variables.- anfisgenerates an initial FIS structure with the specified number of membership functions using- genfiswith grid partitioning.
- Vector of positive integers with length equal to the number of input variables specifying the number of membership functions for each input variable. - anfisgenerates an initial FIS structure with the specified numbers of membership functions using- genfiswith grid partitioning.
- FIS structure generated using - genfiscommand with grid partitioning or subtractive clustering. The specified system must have the following properties:- Single output, obtained using weighted average defuzzification. 
- First or zeroth order Sugeno-type system; that is, all output membership functions must be the same type and be either - 'linear'or- 'constant'.
- No rule sharing. Different rules cannot use the same output membership function; that is, the number of output membership functions must equal the number of rules. 
- Unity weight for each rule. 
- No custom membership functions or defuzzification methods. 
 
Maximum number of training epochs, specified as a positive integer. The training process stops when it reaches the maximum number of training epochs.
Training error goal, specified as a scalar. The training process stops when the
            training error is less than or equal to ErrorGoal.
Initial training step size, specified as a positive scalar.
The anfis training algorithm tunes the FIS parameters using
            gradient descent optimization methods. The training step size is the magnitude of each
            gradient transition in the parameter space. Typically, you can increase the rate of
            convergence of the training algorithm by increasing the step size. During optimization,
              anfis automatically updates the step size using
              StepSizeIncreaseRate and
              StepSizeDecreaseRate.
Generally, the step-size profile during training is a curve that increases
            initially, reaches some maximum, and then decreases for the remainder of the training.
            To achieve this ideal step-size profile, adjust the initial step-size and the increase
            and decrease rates (opt.StepSizeDecreaseRate,
              opt.StepSizeIncreaseRate).
Step-size decrease rate, specified as a positive scalar less than
              1. If the training error undergoes two consecutive combinations of
            an increase followed by a decrease, then anfis scales the step size
            by the decrease rate.
Step-size increase rate, specified as a scalar greater than 1. If
            the training error decreases for four consecutive epochs, then
              anfis scales the step size by the increase rate.
Flag for showing ANFIS information at the start of the training process, specified as one of the following values.
- 1— Display the following information about the ANFIS system and training data:- Number of nodes in the ANFIS system 
- Number of linear parameters to tune 
- Number of nonlinear parameters to tune 
- Total number of parameters to tune 
- Number of training data pairs 
- Number of checking data pairs 
- Number of fuzzy rules 
 
- 0— Do not display the information.
Flag for showing training error values after each training epoch, specified as one of the following values.
- 1— Display the training error.
- 0— Do not display the training error.
Flag for showing step size whenever the step size changes, specified as one of the following values.
- 1— Display the step size.
- 0— Do not display the step size.
Flag for displaying final results after training, specified as one of the following values.
- 1— Display the results.
- 0— Do not display the results.
Validation data for preventing overfitting to the training data, specified as an
            array. For a fuzzy system with N inputs, specify
              ValidationData as an array with N+1 columns.
            The first N columns contain input data and the final column contains
            output data. Each row of ValidationData contains one data
            point.
At each training epoch, the training algorithm validates the FIS using the validation data.
Generally, validation data should fully represent the features of the data the FIS is intended to model, while also being sufficiently different from the training data to test training generalization.
Optimization method used in membership function parameter training, specified as one of the following values.
- 1— Use a hybrid method, which uses a combination of backpropagation to compute input membership function parameters, and least squares estimation to compute output membership function parameters.
- 0— Use backpropagation gradient descent to compute all parameters.
Object Functions
| anfis | Tune Sugeno-type fuzzy inference system using training data | 
Examples
Create a default option set.
opt = anfisOptions;
Specify training options using dot notation. For example, specify the following options:
- Initial FIS with - 4membership functions for each input variable
- Maximum number of training epochs equal to - 30.
opt.InitialFIS = 4; opt.EpochNumber = 30;
You can also specify options when creating the option set using one or more Name,Value pair arguments.
opt2 = anfisOptions(InitialFIS=4,EpochNumber=30);
Version History
Introduced in R2017a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)