# estimatePortRisk

Estimate portfolio risk according to risk proxy associated with corresponding object

## Syntax

``prsk = estimatePortRisk(obj,pwgt)``

## Description

example

````prsk = estimatePortRisk(obj,pwgt)` estimates portfolio risk according to the risk proxy associated with the corresponding object (`obj`) for `Portfolio`, `PortfolioCVaR`, or `PortfolioMAD` objects. For details on the respective workflows when using these different objects, see Portfolio Object Workflow, PortfolioCVaR Object Workflow, and PortfolioMAD Object Workflow.```

## Examples

collapse all

Given portfolio `p`, use the `estimatePortRisk` function to show the standard deviation of portfolio returns for each portfolio in `pwgt`.

```m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontierLimits(p); prsk = estimatePortRisk(p, pwgt); disp(prsk)```
``` 0.0769 0.3500 ```

Given a portfolio `pwgt`, use the `estimatePortRisk` function to show the conditional value-at-risk (CVaR) of portfolio returns for each portfolio.

```m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; rng(11); AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioCVaR; p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); p = setProbabilityLevel(p, 0.95); pwgt = estimateFrontierLimits(p); prsk = estimatePortRisk(p, pwgt); disp(prsk)```
``` 0.0407 0.1911 ```

The function `rng`($seed$) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

Given a portfolio `pwgt`, use the `estimatePortRisk` function to show the mean-absolute deviation of portfolio returns for each portfolio.

```m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; rng(11); AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioMAD; p = setScenarios(p, AssetScenarios); p = setDefaultConstraints(p); pwgt = estimateFrontierLimits(p); prsk = estimatePortRisk(p, pwgt); disp(prsk)```
``` 0.0177 0.0809 ```

The function `rng`($seed$) resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

## Input Arguments

collapse all

Object for portfolio, specified using `Portfolio`, `PortfolioCVaR`, or `PortfolioMAD` object. For more information on creating a portfolio object, see

Data Types: `object`

Collection of portfolios, specified as a `NumAssets`-by-`NumPorts` matrix, where `NumAssets` is the number of assets in the universe and `NumPorts` is the number of portfolios in the collection of portfolios.

Data Types: `double`

## Output Arguments

collapse all

Estimates for portfolio risk according to the risk proxy associated with the corresponding object (`obj`) for each portfolio in `pwgt`, returned as a `NumPorts` vector.

`prsk` is returned for a `Portfolio`, `PortfolioCVaR`, or `PortfolioMAD` input object (`obj`).

## Tips

You can also use dot notation to estimate portfolio risk according to the risk proxy associated with the corresponding object (`obj`).

`prsk = obj.estimatePortRisk(pwgt);`

Introduced in R2011a