convert2sur
Convert multivariate normal regression model to seemingly unrelated regression (SUR) model
Description
Examples
This example shows a CAPM demonstration using 6 stocks and 60 months of simulated asset returns, where the model for each stock is AssetReturn = Alpha * 1 + CashReturn + Beta * (MarketReturn - CashReturn) + Noise and the parameters to estimate are Alpha and Beta.
Using simulated data, where the Alpha estimate(s) are displayed in the first row(s) and the Beta estimate(s) are display in the second row(s).
Market = (0.1 - 0.04) + 0.17*randn(60, 1); Asset = (0.1 - 0.04) + 0.35*randn(60, 6); Design = cell(60, 1); for i = 1:60 Design{i} = repmat([ 1, Market(i) ], 6, 1); end
Obtain the aggregate estimates for all stocks.
[Param, Covar] = mvnrmle(Asset, Design);
disp({'All 6 Assets Combined'}); {'All 6 Assets Combined'}
disp(Param);
0.0233
0.1050
Estimate parameters for individual stocks using convert2sur
Group = 1:6;
DesignSUR = convert2sur(Design, Group);
[Param, Covar] = mvnrmle(Asset, DesignSUR);
Param = reshape(Param, 2, 6);
disp({ 'A', 'B', 'C', 'D', 'E', 'F' }); {'A'} {'B'} {'C'} {'D'} {'E'} {'F'}
disp(Param);
0.0144 0.0270 0.0046 0.0419 0.0376 0.0291
0.3264 -0.1716 0.3248 -0.0630 -0.0001 0.0637
Estimate parameters for pairs of stocks by forming groups.
disp({'A & B', 'C & D','E & F'}); {'A & B'} {'C & D'} {'E & F'}
Group = { [1,2 ],[3,4],[5,6]};
DesignSUR = convert2sur(Design, Group);
[Param, Covar] = mvnrmle(Asset, DesignSUR);
Param = reshape(Param, 2, 3);
disp(Param); 0.0186 0.0190 0.0334
0.0988 0.1757 0.0293
Input Arguments
Data series, specified as a matrix or a cell array that depends on the
number of data series NUMSERIES.
If
NUMSERIES = 1,convert2surreturns theDesignmatrix.If
NUMSERIES > 1,Designis a cell array withNUMSAMPLEScells, where each cell contains aNUMSERIES-by-NUMPARAMSmatrix of known values.
Data Types: double | cell
Grouping for data series, specified using separate parameters for each group. Specify groups either by series or by groups:
To identify groups by series, construct an index vector that has
NUMSERIESelements. Elementi = 1, ..., NUMSERIESin the vector, and has the indexj = 1, ..., NUMGROUPSof the group in which series i is a member.To identify groups by groups, construct a cell array with
NUMGROUPSelements. Each cell contains a vector with the indexes of the series that populate a given group.In either case, the number of series is
NUMSERIESand the number of groups isNUMGROUPS, with1≤NUMGROUPS≤NUMSERIES.
Data Types: double | cell
Output Arguments
Seemingly unrelated regression model with a specified grouping of the data
series, returned as either a matrix or a cell array that depends on the
value of NUMSERIES.
If
NUMSERIES = 1,DesignSUR = Design, which is aNUMSAMPLES-by-NUMPARAMSmatrix.If
NUMSERIES > 1andNUMGROUPSgroups are to be formed,Designis a cell array withNUMSAMPLEScells, where each cell contains aNUMSERIES-by-(NUMGROUPS * NUMPARAMS)matrix of known values.
The original collection of parameters that are common to all series are replicated to form collections of parameters for each group.
More About
Multivariate normal regression is a statistical modeling approach that extends traditional regression techniques to situations where the dependent variable is multivariate, meaning it consists of multiple correlated outcomes.
Multivariate normal regression is particularly useful in fields where researchers are interested in understanding the relationships between several response variables and one or more predictor variables.
The Seemingly Unrelated Regression (SUR) model is a statistical method used in econometrics to estimate multiple regression equations that are related to each other through their error terms.
The SUR model allows for the simultaneous estimation of these equations, taking into account the potential correlation between the error terms of different equations. This can lead to more efficient estimates compared to estimating each equation independently.
Version History
Introduced in R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)