k-means, mean-shift and normalized-cut segmentation

버전 (25.1 KB) 작성자: Alireza
k-means, mean-shift and normalized-cut segmentation
다운로드 수: 9.3K
업데이트 날짜: 2015/8/27

라이선스 보기

This code implemented a comparison between “k-means” “mean-shift” and “normalized-cut” segmentation
Teste methods are:
Kmeans segmentation using (color) only
Kmeans segmentation using (color + spatial)
Mean Shift segmentation using (color) only
Mean Shift segmentation using (color + spatial)
Normalized Cut (inherently uses spatial data)
kmeans parameter is "K" that is Cluster Numbers
meanshift parameter is "bw" that is Mean Shift Bandwidth
ncut parameters are "SI" Color similarity, "SX" Spatial similarity, "r" Spatial threshold (less than r pixels apart), "sNcut" The smallest Ncut value (threshold) to keep partitioning, and "sArea" The smallest size of area (threshold) to be accepted as a segment

an implementation by "Naotoshi Seo" with a little modification is used for “normalized-cut” segmentation, available online at: "http://note.sonots.com/SciSoftware/NcutImageSegmentation.html". It is sensitive in choosing parameters.
an implementation by "Bryan Feldman" is used for “mean-shift clustering"

인용 양식

Alireza (2024). k-means, mean-shift and normalized-cut segmentation (https://www.mathworks.com/matlabcentral/fileexchange/52698-k-means-mean-shift-and-normalized-cut-segmentation), MATLAB Central File Exchange. 검색됨 .

MATLAB 릴리스 호환 정보
개발 환경: R2011a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
Help CenterMATLAB Answers에서 Cluster Analysis and Anomaly Detection에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보

FX submission added