k-means, mean-shift and normalized-cut segmentation

버전 1.0.0.0 (25.1 KB) 작성자: Alireza
k-means, mean-shift and normalized-cut segmentation
다운로드 수: 9.4K
업데이트 날짜: 2015/8/27

라이선스 보기

This code implemented a comparison between “k-means” “mean-shift” and “normalized-cut” segmentation
Teste methods are:
Kmeans segmentation using (color) only
Kmeans segmentation using (color + spatial)
Mean Shift segmentation using (color) only
Mean Shift segmentation using (color + spatial)
Normalized Cut (inherently uses spatial data)
kmeans parameter is "K" that is Cluster Numbers
meanshift parameter is "bw" that is Mean Shift Bandwidth
ncut parameters are "SI" Color similarity, "SX" Spatial similarity, "r" Spatial threshold (less than r pixels apart), "sNcut" The smallest Ncut value (threshold) to keep partitioning, and "sArea" The smallest size of area (threshold) to be accepted as a segment

an implementation by "Naotoshi Seo" with a little modification is used for “normalized-cut” segmentation, available online at: "http://note.sonots.com/SciSoftware/NcutImageSegmentation.html". It is sensitive in choosing parameters.
an implementation by "Bryan Feldman" is used for “mean-shift clustering"

인용 양식

Alireza (2026). k-means, mean-shift and normalized-cut segmentation (https://kr.mathworks.com/matlabcentral/fileexchange/52698-k-means-mean-shift-and-normalized-cut-segmentation), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2011a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Cluster Analysis and Anomaly Detection에 대해 자세히 알아보기
도움

도움 받은 파일: K-means clustering

도움 준 파일: normalized-cut segmentation using color and texture data

버전 게시됨 릴리스 정보
1.0.0.0

FX submission added