Machine Learning Made Easy

버전 (270 KB) 작성자: Shashank Prasanna
MATLAB files from the webinar
다운로드 수: 16.3K
업데이트 날짜: 2016/9/1

라이선스 보기

These files accompany the 'Machine Learning Made Easy' webinar which can be viewed here:
About the webinar:
Machine learning is ubiquitous. From medical diagnosis, speech, and handwriting recognition to automated trading and movie recommendations, machine learning techniques are being used to make critical business and life decisions every moment of the day. Each machine learning problem is unique, so it can be challenging to manage raw data, identify key features that impact your model, train multiple models, and perform model assessments.
In this session we explore the fundamentals of machine learning using MATLAB®.
Highlights include:
• Accessing, exploring, analyzing, and visualizing data in MATLAB
• Using the Classification Learner app and functions in the Statistics and Machine Learning Toolbox® to perform common machine learning tasks such as:
o Feature selection and feature transformation
o Specifying cross-validation schemes
o Training a range of classification models, including support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, and discriminant analysis
o Performing model assessment and model comparisons using confusion matrices and ROC curves to help choose the best model for your data
• Integrating trained models into applications such as computer vision, signal processing, and data analytics.

인용 양식

Shashank Prasanna (2024). Machine Learning Made Easy (, MATLAB Central File Exchange. 검색됨 .

MATLAB 릴리스 호환 정보
개발 환경: R2015a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
Help CenterMATLAB Answers에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!


버전 게시됨 릴리스 정보

Updated license

Fixed the webinar video link

Added link to the webinar recording

Updated required products list

Updated required products

Updated formatting in the published script