The Kalman filter is actually a feedback approach to minimize the estimation error in terms of sum of square. This approach can be applied to general nonlinear optimization. This function shows a way using the extended Kalman filter to solve some unconstrained nonlinear optimization problems. Two examples are included: a general optimization problem and a problem to solve a set of nonlinear equations represented by a neural network model.
This function needs the extended Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18189&objectType=FILE
인용 양식
Yi Cao (2026). Unconstrained Optimization using the Extended Kalman Filter (https://kr.mathworks.com/matlabcentral/fileexchange/18286-unconstrained-optimization-using-the-extended-kalman-filter), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
- Signal Processing > Signal Processing Toolbox > Digital and Analog Filters > Digital Filter Design > Adaptive Filters >
태그
도움
도움 받은 파일: Learning the Extended Kalman Filter
도움 준 파일: Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter
| 버전 | 게시됨 | 릴리스 정보 | |
|---|---|---|---|
| 1.0.0.0 | update description |
