RL-Driven Adaptive Phase Optimization for IRS-Based Systems

버전 1.0 (3.24 KB) 작성자: Ardavan Rahimian
This code simulates an RL-based methodology to dynamically optimize phase shifts within an IRS, aiming to enhance communication quality.
다운로드 수: 159
업데이트 날짜: 2023/10/19

라이선스 보기

This code simulates a reinforcement learning (RL) strategy for the dynamic optimization of phase shifts in an intelligent reflective surface (IRS) within a wireless communication scenario. Its main goal is the adaptive modification of IRS phase shifts to optimize the signal-to-noise ratio (SNR) at the receiving end, thus improving overall system performance. This code can serve as a foundational framework for exploring the capabilities of RL in more complex and practical IRS optimization scenarios.

인용 양식

Ardavan Rahimian (2024). RL-Driven Adaptive Phase Optimization for IRS-Based Systems (https://www.mathworks.com/matlabcentral/fileexchange/136816-rl-driven-adaptive-phase-optimization-for-irs-based-systems), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2023b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
태그 태그 추가

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0